

reviewer2@nptel.iitm.ac.in ▼

Courses » Basic Calculus for Engineers, Scientists and Economists

Announcements

Course

Ask a Question

Progress

Unit 4 - Week 03-**Integration Of Real Functions**

Course outline

How to access the portal

Week 01 -Numbers, Functions, Sequencs and Limits of **Functions**

Week- 02-Continuity, Derivative, Maxima and Minima and Taylor's expansion

Week 03-Integration Of **Real Functions**

- O Lecture 13 -Integration - 1
- Lecture 14 -Integration - 2
- O Lecture 15 -Integration By Parts
- O Lecture 16 -Definite Integral
- Cecture 17 -Riemann Integration 1
- O Lecture 18 -Riemann Integration 2
- Quiz : Assignment-3
- Assignment-3 Solution

Unit 4 - Week - 04 - Function of Two Variables, Limits,

Assignment-3

The due date for submitting this assignment has passed. Due on 2017-02-14, 23:59 IS As per our records you have not submitted this assignment.

1) 1. Using Leibnitz rule, find $\frac{d}{dx} \int_{cosx}^{sinx} \frac{1}{1-t^2} dt$

1 point

- $\frac{1}{sinx} + \frac{1}{cosx}$
- $\frac{1}{\sin x} \frac{1}{\cos x}$

No, the answer is incorrect.

Score: 0

Accepted Answers:

$$\frac{1}{\sin x} + \frac{1}{\cos x}$$

2) 2. The area between the curves $x = y^2$ and $x = 2y - y^2$ is

1 point

- 3
- $\frac{1}{3}$
- <u>2</u>

No, the answer is incorrect.

Score: 0

Accepted Answers:

3) 3. The area enclosed by the curves $x = -y^2$ and the line y = x + 2is

1 point

- 92
- $\frac{7}{2}$

https://onlinecourses-archive.nptel.ac.in/noc17_hs04/unit?unit=30&assessment=38

Continuity, Differentiability, Unconstrained and Constrained minimization

Week - 05 -Infinite Series, **Multiple Integrals**

3

4

No, the answer is incorrect.

Accepted Answers:

2

4

0

4) 4. $\int_0^{2\pi} \sqrt{\frac{1-\cos x}{2}} dx =$

No, the answer is incorrect.

Score: 0

Accepted Answers:

4

5) 5. $\int sec^2t \tan(tant)dt =$

1 point

sec(tant) + c

tan(sect) + c

ln(tan(sect)) + c

ln(sec(tant)) + c

No, the answer is incorrect.

Score: 0

Accepted Answers:

ln(sec(tant)) + c

6) 6. $\int_0^{\pi} \int_0^{\pi} \int_0^{\pi} \cos(u + v + w) du dv dw$

1 point

1

-1

-2

No, the answer is incorrect.

Score: 0

Accepted Answers:

7) 7. The volume of the solid generated by revolving the regions bounded by the curves and lines y = 2x - 1, $y = \sqrt{x}$, x = 0 about y - axis is

1 point

True False No, the ans Score: 0 Accepted A False 10)10. Any to True False	oounded monotone function is always Riemann integrable. wer is incorrect.	1 po
True False No, the ans Score: 0 Accepted A False 10)10. Any b True False No, the ans	wer is incorrect. nswers: bounded monotone function is always Riemann integrable.	
True False No, the ans Score: 0 Accepted A False 10)10. Any b	wer is incorrect. nswers:	
True False No, the ans Score: 0 Accepted A False 10)10. Any b	wer is incorrect. nswers:	
True False No, the ans Score: 0 Accepted A False 10)10. Any b	wer is incorrect. nswers:	
True False No, the ans Score: 0 Accepted A False 10)10. Any b	wer is incorrect. nswers:	
True False No, the ans Score: 0 Accepted A False	wer is incorrect. nswers:	
True False No, the ans Score: 0 Accepted A	wer is incorrect.	emann integ
True False No, the ans Score: 0	wer is incorrect.	emann integ
True False No, the ans		emann integ
○ True	tion f is not differentiable at some points, then it is not Ri	emann integ
○ True	tion f is not differentiable at some points, then it is not Ri	emann integ
	tion f is not differentiable at some points, then it is not Ri	emann integ
	tion f is not differentiable at some points, then it is not Ri	emann inieg
. Ij a junc	tion f is not differentiable at some points, then it is not Ri	emann inieg
T.C.C.		amann intac
9)		1 pc
ln 3		
Accepted A	nswers:	
Score: 0		
No, the ans	wer is incorrect.	
$-\ln 3$		
ln 3		
111 2		
ln 2		
$-\infty$		
. 0. 1 110 00	u^2-2u^{13}	1 po
	alue of the improper integral $\int_3^\infty \frac{2 du}{u^2 - 2u}$ is	1 n
$\frac{7\pi}{15}$		
Accepted A	nswers:	
Score: 0		
	wer is incorrect.	
$\frac{7\pi}{15}$		
$\frac{8\pi}{15}$		

Previous Page

⊢no

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

A project of

In association with

Funded by

Government of India Ministry of Human Resource Development

