Quiz 2- Linear Regression Analysis (Based on Lectures 15-31)

Time: 1 Hour

- The random errors ε in multiple linear regression model y = Xβ+ε are assumed to be identically and independently distributed following the normal distribution with zero mean and constant variance. Here y is a n×1 vector of observations on response variable, X is a n×K matrix of n observations on each of the K explanatory variables, β is a K×1 vector of regression coefficients and ε is a n×1 vector of random errors. The residuals ê = y ŷ based on the ordinary least squares estimator of β have, in general,
 - (A) zero mean, constant variance and are independent
 - (B) zero mean, constant variance and are not independent
 - (C) zero mean, non constant variance and are not independent
 - (D) non zero mean, non constant variance and are not independent

Answer: (C)

Solution:The residual is

$$\hat{\varepsilon} = y - \hat{y}$$

$$= y - Xb \text{ where } b = (X'X)^{-1}X'y$$

$$= (I - H)y \text{ where } H = X(X'X)^{-1}X'$$

$$= (I - H)\varepsilon$$

$$E(\hat{\varepsilon}) = 0$$

$$V(\hat{\varepsilon}) = \sigma^{2}(I - H)$$

- Since $E(\hat{\varepsilon}) = 0$, so $\hat{\varepsilon}_i$'s have zero mean.
- Since I H is not generally a diagonal matrix, so $\hat{\varepsilon}_i$'s do not have necessarily the same variances.
- The off-diagonal elements in (I-H) are not zero, in general. So $\hat{\varepsilon}_i$'s are not independent.

2. Consider the multiple linear regression model $y = X\beta + \varepsilon, E(\varepsilon) = 0$, $V(\varepsilon) = diag(\sigma_1^2, \sigma_2^2, ..., \sigma_n^2)$ where y is a $n \times 1$ vector of observations on response variable, X is a $n \times K$ matrix of n observations on each of the K explanatory variables, β is a $K \times 1$ vector of regression coefficients and ε is a $n \times 1$ vector of random errors. Let h_{ii} be the i^{th} diagonal element of matrix $H = X(X'X)^{-1}$. The variance of the i^{th} PRESS residual is

(A)
$$\sigma_i^2 (1-h_{ii})$$

(B) $\sigma_i^2 (1-h_{ii})^2$
(C) $\frac{\sigma_i^2}{1-h_{ii}}$
(D) $\frac{\sigma_i^2}{(1-h_{ii})^2}$

Answer: (C)

Solution: Let $e_i = y_i - \hat{y}_i$ be the *i*th ordinary residual based on the ordinary least squares estimator of β . The *i*th PRESS residual $e_{(i)}$ is

$$e_{(i)} = \frac{e_i}{1 - h_{ii}}.$$

The variance of $e_{(i)}$ is obtained as follows:

$$Var(e_{(i)}) = \frac{Var(e_i)}{(1-h_{ii})^2}$$

and

$$V(e) = (I - H)V(\varepsilon)$$

$$\Rightarrow Var(e_i) = \sigma_i^2(1 - h_{ii}).$$

Thus

$$Var(e_{(i)}) = \frac{\sigma_i^2}{1 - h_{ii}}.$$

- 3. Consider the linear model $y = \beta_1 X_1 + \beta_2 X_2 + \varepsilon$, $E(\varepsilon) = 0$, $V(\varepsilon) = I$ where the study variable y and the explanatory variables X_1 and X_2 are scaled to length unity and the correlation coefficient between X_1 and X_2 is 0.5. Let b_1 and b_2 be the ordinary least squares estimators of β_1 and β_2 respectively. The covariance between b_1 and b_2 is
 - (A) 2/3
 - (B) -2/3
 - (C) -0.5
 - (D) 1/3

Answer: (B)

Solution: If *r* is the correlation coefficient between X_1 and X_2 , then the ordinary least squares estimators b_1 and b_2 of β_1 and β_2 are the solutions of

$$b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = (X X)^{-1} X y \text{ where } X X = \begin{pmatrix} 1 & r \\ r & 1 \end{pmatrix}.$$

Then

$$(X'X)^{-1} = \frac{1}{1-r^2} \begin{pmatrix} 1 & -r \\ -r & 1 \end{pmatrix}$$
$$V(b) = (X'X)^{-1} = \frac{1}{1-r^2} \begin{pmatrix} 1 & -r \\ -r & 1 \end{pmatrix}$$
$$Cov(b_1, b_2) = -\frac{r}{1-r^2}.$$

When r = 0.5, $\operatorname{cov}(b_1, b_2) = -\frac{2}{3}$.

- 4. Under the multicolinearity problem in the data in the model $y = \beta_1 X_1 + \beta_2 X_2 + \varepsilon$, where the study variable y and the explanatory variables X_1 and X_2 are scaled to length unity and the random error ε is normally distributed with $E(\varepsilon) = 0, V(\varepsilon) = \sigma^2 I$ where σ^2 is unknown. What do you conclude about the null hypothesis $H_{01}: \beta_1 = 0$ and $H_{02}: \beta_2 = 0$ out of the following when sample size is small.
 - (A) Both H_{01} and H_{02} are more often accepted.
 - (B) Both H_{01} and H_{02} are more often rejected.
 - (C) H_{01} is accepted more often and H_{02} is rejected more often.
 - (D) H_{01} is rejected more often and H_{02} is accepted more often.

Answer: (A)

Solution: If *r* is the correlation coefficient between X_1 and X_2 , then the ordinary least squares estimators b_1 and b_2 are the solutions of

$$b = (X'X)^{-1}X'y$$
 where $X'X = \begin{pmatrix} 1 & r \\ r & 1 \end{pmatrix}$.

Then

$$E(b) = \beta$$

$$V(b) = \sigma^{2} (X'X)^{-1} = \frac{\sigma^{2}}{1 - r^{2}} \begin{pmatrix} 1 & -r \\ -r & 1 \end{pmatrix}.$$

As r becomes higher, the variance of b_1 and b_2 become larger and so the test statistic

$$t_i = \frac{b_i}{\sqrt{\operatorname{var}(b_i)}}, i = 1, 2$$

for testing H_{0i} : $\beta_i = 0$ becomes very small and so H_{0i} is more often accepted.

- 5. Consider the setup of multiple linear regression model $y = X\beta + \varepsilon$ where y is a $n \times 1$ vector of observations on response variable, X is a $n \times K$ matrix of n observations on each of the K explanatory variables, β is a $K \times 1$ vector of regression coefficients and ε is a $n \times 1$ vector of random errors following $N(0, \sigma^2 I)$ with all usual assumptions. Let $H = X(X X)^{-1}$ and h_{ii} be the *i*th diagonal element of H. A data point is a leverage point if h_{ii} is
 - (A) greater than the value of average size of hat diagonal.
 - (B) less than the value of average size of hat diagonal.
 - (C) greater or less than the value of average size of hat diagonal.
 - (D) none of the above.

Answer: (A)

Solution: The *i*th diagonal element of *H* is $h_{ii} = \underline{x}_i^1 (X^1 X)^{-1} \underline{x}_i$ where \underline{x}_i is the *i*th row of *X* matrix. The h_{ii} is a standardized measure of distance of *i*th observation from the center (or centroid) of the *x*-space.

Average size of hat diagonal
$$\left(\overline{h}\right) = \frac{\sum_{i=i}^{n} h_{ii}}{n} = \frac{rank(H)}{n} = \frac{trH}{n} = \frac{K}{n}$$
.

If $h_{ii} > 2\overline{h}$ then the point is remote enough to be considered as a leverage point.