Solution Set of Assignment-1

1. (a) $x_{\min }=0, x_{\max }$ does not exist
(b) $x_{\text {min }}=\frac{3 \pi}{2}, x_{\text {max }}=\frac{\pi}{2}$
(c) $x_{\text {min }}=0, x_{\text {max }}= \pm 2$
(d) $x_{\min }=-1, x_{\max }$ does not exist.
(e) $x_{\text {min }}=0, x_{\text {max }}=3$
(f) $x_{\text {min }}=2, x_{\text {max }}=0$
2. (a)convex, (b)convex, (c)not convex, (d) not convex
3. (a)Yes, (b)Yes, (c)Yes, (d)No, (e)Yes
4. (a) $\mathrm{cl}=[0,1], \mathrm{Int}=(0,1)$
(b) $\mathrm{cl}=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$, Int $=\left\{(x, y): x^{2}+y^{2}<1\right\}$
(c) $\mathrm{cl}=\mathrm{A}$, Int $=\emptyset$
(d) $c l=\{(x, y): x \geq 0, y \geq 0\}$, Int $=\{(x, y): x>0, y>0\}$
5. (a) $\operatorname{conv}(\mathrm{A})=\mathrm{A},(\mathrm{b}) \operatorname{conv}(\mathrm{A})=[0,2]$
(c) $\operatorname{conv}(\mathrm{A})=\{(x, y): x \geq 0, y \geq 0\}(\mathrm{d}) \operatorname{conv}(\mathrm{A})=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$
6. (a)T, (b)T, (c)F, (d)T
7. (a) F, (b) F, (c) F, (d) T, (e) T, (f) F, (g) F, (h) T,
8. (a)F, (b)F, (c)T, (d)F, (e)F, (f)F,
9. (a) $\{0\}$, (b) $(-\infty, 0]$
10. (a)T, (b)T, (c)F, (d)T, (e)T, (f)T, (g)F, (h)T
11. (a) $f^{\prime}(o, v)=|v|$
(b) $f^{\prime}((1,1), v)=\langle v, b\rangle$
12. (a)F, (b)F, (c)T, (d)F, (e)T, (f)T
13. (a) $N_{C}\left(x_{0}\right)=\lambda x_{0}, \lambda \geq 0$
(b) $N_{C}((1,1))=\{(x, y): x \geq 0, y \geq 0\}$
(c) $N_{C}(1)=[0, \infty]$
(d) $N_{C}((0,0))=\{(x, y): x=0\}$
14. (a)T, (b)T, (c)T
15. (a)N, (b)Y, (c)N, (d) Y
16. (a)T, (b)T, (c)T, (d)F
17. (a)T, (b)F, (c)T, (d)T, (e)F (f)F
18. (a) $x^{* 2} / 2$,
(b) $\left\|x^{*}\right\|^{2} / 2$
(c) $\sigma_{C}(x)$
19. (a)T, (b)F, (c)T
20. (a)Polytope
(b)Vertices of the set
(c)Boundary
(d) $x=x_{1}=x_{2}$
