Question Bank

Q1. Why for a polyhedral set the extreme points are finite?
Q2. Prove that a bounded polyhedral set is nothing but the convex hull of its vertices.
Q3. Let $A=\left\{x \in \mathbb{R}^{2}: x=\left(x_{1}, x_{2}\right),\left(x_{1}-1\right)^{2}+x_{2}^{2} \leq 1\right\}$. Then calculate Cone(A).
Q4. prove that for an LP optima is obtained at a vertex and thus every minimum is a bfs.
Q5. Check if the following LP will have unique solution or not without calculating it.

$$
\begin{gathered}
\min x_{1}+5 x_{2} \\
\text { s.t. } x_{1}+x_{2} \leq 2 \\
x_{1} \leq 1 \\
x_{1}+8 x_{2} \leq 4 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

Q6.Check if the following LP problem is unbounded or not.

$$
\begin{gathered}
\min x+2 y \\
\text { s.t. } 3 x+4 y \geq 9 \\
2 x+3 y \geq 4 \\
x \geq 0, y \geq 0
\end{gathered}
$$

Q7. Write down the relaxed KKT condition for the following LP problems.
(i) $\min x_{1}+5 x_{2}$
s.t. $x_{1}+x_{2} \leq 2$
$x_{1} \leq 1$
$x_{1}+8 x_{2} \leq 4$
$x_{1}, x_{2} \geq 0$
(ii) $\min x+2 y$
s.t. $3 x+4 y \geq 9$
$2 x+3 y \geq 4$
$x \geq 0, y \geq 0$
Q8. Prove that $\log (1+x) \leq x$ if $x \geq-1$.
Q9. What is the LP problem corresponding to the convex optimization problem
$\min \mathrm{f}(\mathrm{x})$
$x \in C$
where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex and C is a closed and convex set.
Q10. Why S_{+}^{n} is not a polyhedral?
Q11. Prove that the dual of an SDP is also an SDP.
Q12. Prove that $\partial\|0\|=B$ (Ball of unit radius)
Q13. What is the slater condition for the following optimization problem

$$
\begin{gathered}
\min \mathrm{f}(\mathrm{x}) \\
\text { s.t. } g_{i}(x) \leq 0 \quad \forall i=1,2, \ldots, m \\
x \in \mathbb{R}^{n}
\end{gathered}
$$

Q14. What is the necessary condition for \bar{y} being a ϵ-solution of the problem

$$
\begin{gathered}
\min \mathrm{f}(\mathrm{x}) \\
\text { s.t. } g_{i}(x) \leq 0 \forall i=1,2, \ldots, m \\
x \in \mathbb{R}^{n}
\end{gathered}
$$

Q15. What is the set of descent direction of the function $f(x)=\left(x, e^{-x}\right)$ at the point $x=0$
Q16. Prove that the set of descent direction of a function f at any point x is an oprn cone.
Q17. Prove that for a convex function the local minimizer is the global minimizer.
Q18. Give an example to show that $\partial h(x) \subseteq \partial g(x)$ is only the necessary condition not sufficient for x being the global minimizer of the D.C. function $\mathrm{f}=\mathrm{g}$-h.
Q19.What is the necessary and sufficient condition for \bar{x} to be the ϵ-minimizer of f over a closed, convex set C ?
Q20. Prove that $\partial_{\epsilon} \partial_{c}(x)=N_{c}^{\epsilon}(x)$.

