Question Bank

Q1. Why for a polyhedral set the extreme points are finite?

Q2. Prove that a bounded polyhedral set is nothing but the convex hull of its vertices.

Q3. Let $A = \{x \in \mathbb{R}^2 : x = (x_1, x_2), (x_1 - 1)^2 + x_2^2 \le 1\}$. Then calculate Cone(A).

Q4. prove that for an LP optima is obtained at a vertex and thus every minimum is a bfs.

Q5. Check if the following LP will have unique solution or not without calculating it.

$$\min x_1 + 5x_2$$

s.t. $x_1 + x_2 \le 2$
 $x_1 \le 1$
 $x_1 + 8x_2 \le 4$
 $x_1, x_2 \ge 0$

Q6.Check if the following LP problem is unbounded or not.

$$\min x + 2y$$

s.t. $3x + 4y \ge 9$
 $2x + 3y \ge 4$
 $x \ge 0, y \ge 0$

Q7. Write down the relaxed KKT condition for the following LP problems.

(i)min
$$x_1 + 5x_2$$

s.t. $x_1 + x_2 \le 2$
 $x_1 \le 1$
 $x_1 + 8x_2 \le 4$
 $x_1, x_2 \ge 0$
(ii)min $x + 2y$
s.t. $3x + 4y \ge 9$
 $2x + 3y \ge 4$
 $x \ge 0, y \ge 0$
Q8. Prove that $\log(1 + x) \le x$ if $x \ge -1$.
Q9. What is the LP problem corresponding to the convex optimization prob-
lem

min f(x) $x \in C$ where $f : \mathbb{R}^n \to \mathbb{R}$ is convex and C is a closed and convex set. Q10. Why S^n_+ is not a polyhedral? Q11. Prove that the dual of an SDP is also an SDP. Q12. Prove that $\partial ||0|| = B$ (Ball of unit radius)

Q13. What is the slater condition for the following optimization problem

$$\min_{\substack{x \in \mathbb{R}^n}} f(x)$$
s.t. $g_i(x) \le 0 \quad \forall \ i = 1, 2, ..., m$

Q14. What is the necessary condition for \bar{y} being a ϵ -solution of the problem

s.t.
$$g_i(x) \leq 0 \quad \forall i = 1, 2, ..., m$$

 $x \in \mathbb{R}^n$

Q15. What is the set of descent direction of the function $f(x) = (x, e^{-x})$ at the point x = 0

Q16. Prove that the set of descent direction of a function f at any point x is an oprn cone.

Q17. Prove that for a convex function the local minimizer is the global minimizer.

Q18. Give an example to show that $\partial h(x) \subseteq \partial g(x)$ is only the necessary condition not sufficient for x being the global minimizer of the D.C. function f=g-h.

Q19.What is the necessary and sufficient condition for \bar{x} to be the ϵ -minimizer of f over a closed, convex set C?

Q20. Prove that $\partial_{\epsilon}\partial_{c}(x) = N_{c}^{\epsilon}(x)$.