Assignment-1

1. Find maxima and minima points of these functions:
(a) $f(x)=x^{2}+1, x \in(-\infty, \infty)$
(b) $f(x)=\sin x,[0,2 \pi]$
(c) $f(x)=x^{2}+1, x \in[-2,2]$
(d) $f(x)=1 / x, x \in[-1,1]$
(e) $f(x)= \begin{cases}3 x, & \text { if } 0 \leq x \leq 1 \\ -x+4, & \text { if } 1 \leq x \leq 2 \\ 2 x-2, & \text { if } 2 \leq x \leq 3\end{cases}$
(f) $f(x)=x^{3}-3 x^{2}, x \in \mathbb{R}$
2. Check these sets are convex or non-convex:
(a) $X=\left\{x: A x=b, A \in M_{m \times n}, x \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}\right\}$
(b) $X=\left\{x:\left\|x-x_{c}\right\| \in r, x \in \mathbb{R}^{n}, x_{c} \in \mathbb{R}^{n}, r \in \mathbb{R}\right\}$
(c) $X=\left\{(x, y): y \geq-x^{2}, x \in \mathbb{R}\right\}$
(d) $X=\{1,2,3, \ldots\}$
3. Check weather these functions are convex or not:
(a) $f(x)=a x+b, a, b, x \in \mathbb{R}$
(b) $f(x)=e^{a x}, a, x \in \mathbb{R}$
(c) $f(x)=|x|^{p}, x \in \mathbb{R}, p \geq 1$
(d) $f(x)=-x^{2}, x \in \mathbb{R}$
(e) $f(x)= \begin{cases}0, & \text { if } 0 \leq x<1 \\ 1, & \text { if } x=1\end{cases}$
4. Find closure and interior of these sets:
(a) $A=[0,1]$
(b) $A=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$
(c) $A=\{a x+b: a, b, x \in \mathbb{R}\}$
(d) $A=\left\{(x, y) \in \mathbb{R}^{2}: x \geq 0, y \geq 0\right\}$
5. Find convex hull of these sets:
(a) $A=[0,1] \subseteq \mathbb{R}$
(b) $A=[0,1] \bigcup\{2\} \subseteq \mathbb{R}$
(c) $A=\{(0,0)\} \bigcup\left\{(x, y) \in \mathbb{R}^{2}: x>0, y>0\right\}$
(d) $A=\{(0,0)\} \bigcup\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$
6. True and False:
(a) Feasible set of linear programming problem is always polyhedral.
(b) A function is improper if it is not proper function.
(c) If C is compact then support function σ_{C} may take the value $+\infty$.
(d) If C is not compact then support function σ_{C} may take the value $+\infty$.
7. True and False:
(a) $A=\{(x, y): x>0, y>0\} \bigcup\{(x, y): x<0, y<0\}$ and $B=$ $\{(x, y): x<0, y>0\} \bigcup\{(x, y): x>0, y<0\}$ can be separated.
(b) $A=\{1\}$ and $B=(1,2]$ can be strictly separated.
(c) Strongly convex function may have more than one minimizer over a closed convex set.
(d) Distance function is convex function.
(e) C_{1}-convex and compact, C_{2}-convex and closed with $C_{1} \bigcap C_{2}=$ \emptyset.Then strict separation is possible.
(f) If we assume closedness in place of compactness of C_{1} then also strict separation is possible.
(g) If $C_{1}=$ epi graph of $1 / x, x>0$ and $C_{2}=\left\{(x, y) \in \mathbb{R}^{2}: y \leq 0\right\}$ then strict separation is not possible.
(h) If f is strictly convex then minimizer of $f(x)$ is unique.
8. True and False:
(a) Every convex function is continuous.
(b) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, f is convex then f may or may not be continuous.
(c) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \mathrm{f}$ is convex differentiable then ∇f has monotonocity property.
(d) $f: C \rightarrow \mathbb{R}$, C-closed convex set then f may or may not be continous.
(e) $f(x)=|x|$ is differentiable function.
(f) $f(x)=x^{3}+x$ is convex function.
9. Write down argmin of given functions:
(a) $f(x)=x^{2}, x \in \mathbb{R}$
(b) $f(x)= \begin{cases}x^{2}, & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}$
10. True and False:
(a) If $f(x)=|x|$ then $\partial f(0)=[-1,1]$.
(b) Necessary and sufficient condition for optimality of local minima \bar{x} is $0 \in \partial f(\bar{x})$
(c) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex then $\partial f(x)$ can be empty for some function.
(d) If f is differentiable then $\partial f(x)$ is singleton.
(e) $\partial f(x)$ is convex and compact set for $x \in \operatorname{dom}(f)$.
(f) If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and f is convex then f is locally lipschitz.
(g) If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and locally lipschitz then f is convex.
(h) $f^{\prime}(x, h)=\max _{\xi \in \partial f(x)}\langle\xi, h\rangle$.
11. Find directional derivatives of these functions:
(a) $f(x)=|x|, x \in \mathbb{R}$, find $f^{\prime}(0, v), v \in \mathbb{R}$
(b) $f(x)=\langle x, b\rangle$, b-fix, $x, b \in \mathbb{R}^{2}$, find $f^{\prime}(x, v), v \in \mathbb{R}, x=(1,1)$
12. True and False:
(a) $\partial\left(f_{1}+f_{2}\right)(x) \subseteq \partial f_{1}(x)+\partial f_{2}(x)$ but reverse inclusion does not hold.
(b) $\partial(\lambda f)(x)=\lambda \partial f(x)$ only for $\lambda>0$
(c) If $f(x)=\max \left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}$ then $\partial f(x)=\operatorname{conv}\left\{\nabla f_{i}(x)\right.$: $i \in J(x)\}$, where $J(x)=\left\{i \in\{1,2 \ldots, m\}: f_{i}(x)=f(x)\right\}$
(d) If x is point of f such that f is not finite.then $\partial f(x)$ can be non empty.
(e) $\partial \delta_{C}(x)=\{v:\langle v, y-x\rangle \leq 0, \forall y \in C\}$ where C is convex set.
(f) \bar{x} is minimizer of $f(x)$ iff \bar{x} is also a minimizer of the problem $\left(f+\delta_{C}\right)(x)$
13. Find normal cone of these sets:
(a) $C=\left\{x \in \mathbb{R}^{2}:\|x\|_{2} \leq 1\right\}$, find $N_{C}\left(x_{0}\right)$, where $\left\|x_{0}\right\|=1$
(b) $C=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x \leq 1,0 \leq y \leq 1\right\}$ find $N_{C}((1,1))$
(c) $C=[0,1]$, find $N_{C}(1)$
(d) $C=\{(x, y): y=0\}$, find $N_{C}((0,0))$
14. True and False
(a) $\delta_{C_{1} \cap C_{2}}(x)=\delta_{C_{1}}(x)+\delta_{C_{2}}(x)$
(b) $N_{C_{1} \cap C_{2}}(x) \neq N_{C_{1}}(x)+N_{C_{2}}(x)$
(c) If $\mathrm{C}=\{x: A x=b\}$ then $N_{C}((x))=\operatorname{ImA}^{\mathrm{T}}$, where \bar{x} is solution of the problem $\min _{x \in C} f(x)$
15. Check weather these functions are lower semi-continuous function:
(a) $\mathrm{f}(\mathrm{x})= \begin{cases}1, & \text { if } x<1 \\ 2, & \text { if } x=1 \\ 1 / 2, & \text { if } x>1\end{cases}$
(b) $\mathrm{f}(\mathrm{x})= \begin{cases}1 / x, & \text { if } x>0 \\ 0, & \text { if } x \leq 0\end{cases}$
(c) $\mathrm{f}(\mathrm{x})= \begin{cases}0, & \text { if } x<0 \\ 1, & \text { if } x \geq 0\end{cases}$
(d) $\mathrm{f}(\mathrm{x})= \begin{cases}0, & \text { if } x \leq 0 \\ 1, & \text { if } x>0\end{cases}$
16. True and False:
(a) Polyhedral set is intersection of infinite number of closed half spaces.
(b) \mathbb{R}_{n}^{+}is polyhedral set.
(c) Polyhedral cone is finitely generated.
(d) A convex cone which is polyhedral may have infinite number of generators.
17. True and False:
(a) If \bar{x} is minimizer for $\mathrm{f}(\mathrm{x})$ over C then $f(\bar{x}+\lambda w)-f(\bar{x}) \geq 0, \forall w \in$ $T_{C}(x), \lambda>0$.
(b) For cone K , $\left(K^{0}\right)^{0}=K$.
(c) If K is closed convex cone then $\left(K^{0}\right)^{0}=K$.
(d) $T_{C}(\bar{x})^{0}=N_{C}(\bar{x})$.
(e) $N_{C}(\bar{x})^{0} \neq T_{C}(\bar{x})$.
(f) If f is proper convex function the f^{*} not always proper function.
18. Fill the blanks:
(a) If $f(x)=\frac{x^{2}}{2}, x \in \mathbb{R}$, then $f^{*}\left(x^{*}\right)=$ \qquad
(b) If $f(x)=\frac{\|x\|^{2}}{2}, x \in \mathbb{R}$, then $f^{*}\left(x^{*}\right)=$ \qquad
(c) $f(x)=\delta_{C}(x), C-$ closed set, then $f^{*}\left(x^{*}\right)=$ \qquad
19. True and False:
(a) Behind every minimization problem there is a maximization problem.
(b) $\operatorname{Val}(\mathrm{CP})$ is always equal to $\operatorname{Val}(\mathrm{DP})$.
(c) If slater condition hold then $\operatorname{Val}(C P)=\operatorname{Val}(D P)$.
20. Fill the blanks:
(a) Bounded polyhedral sets are called
(b) Extreme points of a polyhedral set are \qquad
(c) Extreme points are in the \qquad of sets.
(d) x is extreme point then if $x=\frac{x_{1}+x_{2}}{2}$ then $\mathrm{x}=\ldots \ldots$.
