Assignment-1

- 1. Find maxima and minima points of these functions:
 - (a) $f(x) = x^2 + 1$, $x \in (-\infty, \infty)$ (b) f(x) = sinx, $[0, 2\pi]$ (c) $f(x) = x^2 + 1$, $x \in [-2, 2]$ (d) f(x) = 1/x, $x \in [-1, 1]$ (e) $f(x) = \begin{cases} 3x, & \text{if } 0 \le x \le 1 \\ -x + 4, & \text{if } 1 \le x \le 2 \\ 2x - 2, & \text{if } 2 \le x \le 3 \end{cases}$ (f) $f(x) = x^3 - 3x^2$, $x \in \mathbb{R}$

2. Check these sets are convex or non-convex:

- (a) $X = \{x : Ax = b, A \in M_{m \times n}, x \in \mathbb{R}^n, b \in \mathbb{R}^m\}$ (b) $X = \{x : || x - x_c || \in r, x \in \mathbb{R}^n, x_c \in \mathbb{R}^n, r \in \mathbb{R}\}$ (c) $X = \{(x, y) : y \ge -x^2, x \in \mathbb{R}\}$ (d) $X = \{1, 2, 3, ...\}$
- 3. Check weather these functions are convex or not:

(a)
$$f(x) = ax + b, a, b, x \in \mathbb{R}$$

(b) $f(x) = e^{ax}, a, x \in \mathbb{R}$
(c) $f(x) = |x|^p, x \in \mathbb{R}, p \ge 1$
(d) $f(x) = -x^2, x \in \mathbb{R}$
(e) $f(x) = \begin{cases} 0, & \text{if } 0 \le x < 1\\ 1, & \text{if } x = 1 \end{cases}$

4. Find closure and interior of these sets:

(a)
$$A = [0, 1]$$

(b) $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$
(c) $A = \{ax + b : a, b, x \in \mathbb{R}\}$
(d) $A = \{(x, y) \in \mathbb{R}^2 : x \ge 0, y \ge 0\}$

- 5. Find convex hull of these sets:
 - (a) $A = [0,1] \subseteq \mathbb{R}$
 - (b) $A = [0,1] \bigcup \{2\} \subseteq \mathbb{R}$
 - (c) $A = \{(0,0)\} \bigcup \{(x,y) \in \mathbb{R}^2 : x > 0, y > 0\}$
 - (d) $A = \{(0,0)\} \bigcup \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$
- 6. True and False:
 - (a) Feasible set of linear programming problem is always polyhedral.
 - (b) A function is improper if it is not proper function.
 - (c) If C is compact then support function σ_C may take the value $+\infty$.
 - (d) If C is not compact then support function σ_C may take the value $+\infty$.
- 7. True and False:
 - (a) $A = \{(x,y) : x > 0, y > 0\} \bigcup \{(x,y) : x < 0, y < 0\}$ and $B = \{(x,y) : x < 0, y > 0\} \bigcup \{(x,y) : x > 0, y < 0\}$ can be separated.
 - (b) $A = \{1\}$ and B = (1, 2] can be strictly separated.
 - (c) Strongly convex function may have more than one minimizer over a closed convex set.
 - (d) Distance function is convex function.
 - (e) C_1 -convex and compact, C_2 -convex and closed with $C_1 \bigcap C_2 = \emptyset$. Then strict separation is possible.
 - (f) If we assume closedness in place of compactness of C_1 then also strict separation is possible.
 - (g) If $C_1 = epi \ graph \ of \ 1/x, x > 0$ and $C_2 = \{(x, y) \in \mathbb{R}^2 : y \le 0\}$ then strict separation is not possible.
 - (h) If f is strictly convex then minimizer of f(x) is unique.
- 8. True and False:
 - (a) Every convex function is continuous.
 - (b) $f : \mathbb{R}^n \to \mathbb{R}$, f is convex then f may or may not be continuous.

- (c) $f : \mathbb{R}^n \to \mathbb{R}$, f is convex differentiable then ∇f has monotonocity property.
- (d) $f: C \to \mathbb{R}$, C-closed convex set then f may or may not be continuous.
- (e) f(x) = |x| is differentiable function.
- (f) $f(x) = x^3 + x$ is convex function.
- 9. Write down argmin of given functions:
 - (a) $f(x) = x^2, x \in \mathbb{R}$ (b) $f(x) = \begin{cases} x^2, & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$
- 10. True and False:
 - (a) If f(x) = |x| then $\partial f(0) = [-1, 1]$.
 - (b) Necessary and sufficient condition for optimality of local minima \bar{x} is $0 \in \partial f(\bar{x})$
 - (c) $f: \mathbb{R}^n \to \mathbb{R}$ convex then $\partial f(x)$ can be empty for some function.
 - (d) If f is differentiable then $\partial f(x)$ is singleton.
 - (e) $\partial f(x)$ is convex and compact set for $x \in dom(f)$.
 - (f) If $f : \mathbb{R}^n \to \mathbb{R}$ and f is convex then f is locally lipschitz.
 - (g) If $f : \mathbb{R}^n \to \mathbb{R}$ and locally lipschitz then f is convex.
 - (h) $f'(x,h) = \max_{\xi \in \partial f(x)} \langle \xi, h \rangle.$
- 11. Find directional derivatives of these functions:
 - (a) $f(x) = |x|, x \in \mathbb{R}$, find $f'(0, v), v \in \mathbb{R}$ (b) $f(x) = \langle x, b \rangle$, b-fix, $x, b \in \mathbb{R}^2$, find $f'(x, v), v \in \mathbb{R}, x = (1, 1)$
- 12. True and False:
 - (a) $\partial (f_1 + f_2)(x) \subseteq \partial f_1(x) + \partial f_2(x)$ but reverse inclusion does not hold.
 - (b) $\partial(\lambda f)(x) = \lambda \partial f(x)$ only for $\lambda > 0$
 - (c) If $f(x) = \max\{f_1(x), f_2(x), ..., f_n(x)\}$ then $\partial f(x) = conv\{\nabla f_i(x) : i \in J(x)\},$ where $J(x) = \{i \in \{1, 2..., m\} : f_i(x) = f(x)\}$

- (d) If x is point of f such that f is not finite.then $\partial f(x)$ can be non empty.
- (e) $\partial \delta_C(x) = \{v : \langle v, y x \rangle \le 0, \forall y \in C\}$ where C is convex set.
- (f) \bar{x} is minimizer of f(x) iff \bar{x} is also a minimizer of the problem $(f + \delta_C)(x)$
- 13. Find normal cone of these sets:
 - (a) $C = \{x \in \mathbb{R}^2 : ||x||_2 \le 1\}$, find $N_C(x_0)$, where $||x_0|| = 1$ (b) $C = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, 0 \le y \le 1\}$ find $N_C((1, 1))$ (c) C = [0, 1], find $N_C(1)$ (d) $C = \{(x, y) : y = 0\}$, find $N_C((0, 0))$
- 14. True and False
 - (a) $\delta_{C_1 \cap C_2}(x) = \delta_{C_1}(x) + \delta_{C_2}(x)$
 - (b) $N_{C_1 \cap C_2}(x) \neq N_{C_1}(x) + N_{C_2}(x)$
 - (c) If C={x : Ax = b} then $N_C(\bar{x})$ = ImA^T, where \bar{x} is solution of the problem $\min_{x \in C} f(x)$
- 15. Check weather these functions are lower semi-continuous function:

(a)
$$f(x) = \begin{cases} 1, & \text{if } x < 1\\ 2, & \text{if } x = 1\\ 1/2, & \text{if } x > 1 \end{cases}$$

(b) $f(x) = \begin{cases} 1/x, & \text{if } x > 0\\ 0, & \text{if } x \le 0 \end{cases}$
(c) $f(x) = \begin{cases} 0, & \text{if } x < 0\\ 1, & \text{if } x \ge 0 \end{cases}$
(d) $f(x) = \begin{cases} 0, & \text{if } x \le 0\\ 1, & \text{if } x > 0 \end{cases}$

- 16. True and False:
 - (a) Polyhedral set is intersection of infinite number of closed half spaces.
 - (b) \mathbb{R}_n^+ is polyhedral set.

- (c) Polyhedral cone is finitely generated.
- (d) A convex cone which is polyhedral may have infinite number of generators.
- 17. True and False:
 - (a) If \bar{x} is minimizer for f(x) over C then $f(\bar{x} + \lambda w) f(\bar{x}) \ge 0, \forall w \in T_C(x), \lambda > 0.$
 - (b) For cone K, $(K^0)^0 = K$.
 - (c) If K is closed convex cone then $(K^0)^0 = K$.
 - (d) $T_C(\bar{x})^0 = N_C(\bar{x}).$
 - (e) $N_C(\bar{x})^0 \neq T_C(\bar{x}).$
 - (f) If f is proper convex function the f^* not always proper function.
- 18. Fill the blanks:
 - (a) If $f(x) = \frac{x^2}{2}$, $x \in \mathbb{R}$, then $f^*(x^*) = \dots$
 - (b) If $f(x) = \frac{\|x\|^2}{2}$, $x \in \mathbb{R}$, then $f^*(x^*) = \dots$
 - (c) $f(x) = \delta_C(x)$, C closed set, then $f^*(x^*) = \dots$
- 19. True and False:
 - (a) Behind every minimization problem there is a maximization problem.
 - (b) Val(CP) is always equal to Val(DP).
 - (c) If slater condition hold then Val(CP) = Val(DP).
- 20. Fill the blanks:
 - (a) Bounded polyhedral sets are called
 - (b) Extreme points of a polyhedral set are
 - (c) Extreme points are in the of sets.
 - (d) x is extreme point then if $x = \frac{x_1+x_2}{2}$ then x=.....