Progress

Accepted Answers:

No, the answer is incorrect.

Accepted Answers: (Type: Range) 2.45,2.60

Score: 0

NPTEL » Mathematical Finance

Announcements

Unit 10 - Week 8: Risk-Neutral Pricing in Discrete-Time (Part 2)

Course outline	Assignment 8	
How to access the portal?	The due date for submitting this assignment has passed. Due on 2019-09-25, 23:59	IST.
Week 0	As per our records you have not submitted this assignment.	
Week 1: Introduction to Financial Markets and Instruments	In a three-period binomial model setup, if $E(S_2 S_3=x)=g(x)$, then the number of possible non-zero values of the function g equals:	
Week 2: Time Value of Money and Riskfree Assets	No, the answer is incorrect. Score: 0	
Week 3: Modern Portfolio Theory (Part 1)	Accepted Answers: (Type: Numeric) 4	
Week 4: Modern Portfolio Theory (Part 2)	2) State whether the following statement is TRUE or FALSE:	1 point 1 point
Week 5: Fundamentals of Derivatives	In an N-period binomial model setup, the process $\{Y_n, 0 \leq n \leq N\}$, where $Y_n = S_{n+1}^2 - S_n$, is adapted to the filtration $\{\mathcal{F}_k\}_{k=0}^N$, where \mathcal{F}_k is the σ -field containing the sets determined by the	
Week 6: Derivative pricing by replication in binomial model	first k tosses.	
Week 7: Risk-Neutral Pricing in Discrete-Time (Part 1)	TRUE FALSE No, the answer is incorrect.	
Week 8: Risk-Neutral Pricing in Discrete-Time (Part 2)	Score: 0 Accepted Answers: FALSE	
 Lec 22: Examples of Conditional Expectations, Martingales 	Consider an N-period binomial model setup with the filtration $\{\mathcal{F}_k\}_{k=0}^N$, where \mathcal{F}_k is the σ -field	1 point
Lec 23: Risk-Neutral Pricing of European Derivatives in Binomial Model	containing the sets determined by the first k tosses. Then which of the following is/are not always true? (A) $E[E(S_5 \mathcal{F}_2) \mathcal{F}_4] = E[S_5 \mathcal{F}_2]$.	
 Lec 24: Actual and Risk- Neutral Probabilities, Markov Process, American Options 	(B) $E[E(S_5 \mathcal{F}_4) \mathcal{F}_2] = E[S_5 \mathcal{F}_4].$	
○ Quiz : Assignment 8	(C) $E[E(S_5 \mathcal{F}_5)] = S_5$. (D) $E[E(S_1 \mathcal{F}_5)] = E[S_1]$	
Feedback Form	(D) $E[E(S_5 \mathcal{F}_6)] = E[S_5].$	
O Solution: Assignment 8	□ (A)	
Week 9: Introductory Stochastic Calculus (Part 1)	(B) (C) (D)	
Week 10: Introductory Stochastic Calculus (Part 2)	No, the answer is incorrect. Score: 0 Accepted Answers:	
Week 11: Risk-Neutral Pricing in Continuous-Time (Part 1)	(A) (D)	
Week 12: Risk-Neutral Pricing in Continuous-Time (Part 2)	State whether the following statement is TRUE or FALSE: In an N-period binomial model setup, the stock price process $\{S_n, 0 \le n \le N\}$ is both a martingale	1 point
Text Transcripts	and a Markov process.	
Live Session	TRUE FALSE	
	No, the answer is incorrect. Score: 0 Accepted Answers: FALSE	
	Which of the following is/are always true for discrete-time stochastic processes?	2 points
	(A) Every martingale is both a submartingale and a supermartingale.	
	(B) A process which is a submartingale is also a martingale.	
	(C) If $\{M_n\}_{n\geq 0}$ is a martingale and $\phi(\cdot)$ is a convex function, then $\{E(M_n)\}_{n\geq 0}$ is an increasing sequence.	
	(D) Given a random variable Z with $E[Z] < \infty$ and given a filtration $\{\mathcal{F}_n\}^N$ at the process $\{Z_n\}$	

In a three-period binomial model with parameters u = 1.1, d = 0.95, r = 0.03 and $S_0 = 60$, the

initial price of an American put option that expires at time three and has a strike price of 62 equals:

2 points