

Powered by

minisay or numari Resource Develo	Linear constraints can be considered as:	
	 i. Convex function only ii. Concave function only iii. Both convex and concave iv. None of the above 	
	 i. ii. iii. iv. 	
	No, the answer is incorrect. Score: 0	
	Accepted Answers:	
	iii. 4)	1 point
	Objective function can have a global maximum, if the objective function is a:	
	i. Convex functionii. Concave functioniii. Linear functioniv. None of the above	
	 i. ii. iii. iv. No, the answer is incorrect. Score: 0	
	Accepted Answers:	
	ii. 5) An NLP can be termed as a convex program, if:	1 point
	 i. Objective function and constraints are concave ii. Objective function and constraints are convex iii. Objective function is convex but constraints are concave iv. Objective function is concave but constraints are convex 	
	 i. ii. iii. iv. 	
	No, the answer is incorrect.	
	Score: 0 Accepted Answers:	
	iv.	
	6)	1 point

Consider the NLP with equality constraint: $\max f(x) = 2x1+3x2$ s.t. $g(x) = x1^2+x2^2 = 6$ At the optimum point, we can observe this about Gradient of f(x) and Gradient of g(x):

- i. Gradient of f(x) is parallel to Gradient of g(x)
- ii. Gradient of f(x) is perpendicular to Gradient of g(x)
- iii. Gradient of f(x) is neither perpendicular nor parallel to Gradient of g(x)
- iv. Nothing can be concluded about the gradients

```
i.
ii.
iii.
iv.

No, the answer is incorrect.
Score: 0
Accepted Answers:

i.
7)
1 point
```

Consider the NLP with equality constraint: Max f(x) = 2x1+3x2 s.t. g(x): $x1^2+x2^2 = 6$ If 'a' is the Lagrange Multiplier, then the Lagrange Function for the problem will be:

i. $L(x, a) = 2x1+3x2 - a(x1^2+x2^2 - 6)$ ii. $L(x, a) = x1^2+x2^2 - a(2x1+3x2)$ iii. $L(x, a) = 2x1+3x2 - a(x1^2+x2^2) - 6$ iv. None of the above ii. ii. ii. iv. No, the answer is incorrect. Score: 0 Accepted Answers: *i*. 8)

Consider the NLP with equality constraint: Max f(x) = 2x1+3x2 s.t. $g(x) = x1^2+x2^2 = 6$ 'a' is the Lagrange Multiplier. L(x, a) is the Lagrange Function. Necessary Conditions for optimality will be obtained by:

- i. Differentiating L(x, a) with respect to x1 only
- ii. Differentiating L(x, a) with respect to x1 as well as with respect to x2
- iii. Differentiating L(x, a) with respect to x1, x2, and also with respect to 'a'
- iv. None of the above

i.
ii.
iii.
iv.

No, the answer is incorrect.

1 point

```
Score: 0
 Accepted Answers:
 iii.
9)
                                                                                       1 point
While solving the Constrained NLP: Max f(r, h) = -6.28r^2 - 6.28rh s.t. 3.14r^2h = 100
Where r is the radius of a right circular cylinder and h is the height.
If 'a' is a Lagrange Multiplier, then the Lagrange Function will be:
     i. L(r, h, a) = -6.28r^2 - 6.28rh - a(2lnr + ln h + ln 3.14)
     ii. L(r, h, a) = -6.28r<sup>2</sup> - 6.28rh - a(2lnr + ln h + ln 3.14 - ln 100)
         L(r, h, a) = -6.28r^2 - 6.28rh - a(2lnr + ln h)
    iii.
    iv. None of the above
   О і.
   🔘 іі.
   iii.
   🔘 iv.
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 ii
10)
                                                                                       1 point
Consider Question 9 again. After solving, the condition of optimality will be:
    i. r = 2h
    ii. r = h
   iii. r = h/2
   iv. r = h/3
   ○ i.
   🔘 іі.
   🔘 iii.
   🔘 iv.
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 iii.
11)
                                                                                       1 point
 Consider a Constrained NLP Problem as follows:
 Max f(x1, x2) = 20x1 - 2x1<sup>2</sup> + 25x2 - 5x2<sup>2</sup> s.t. x1+x2 <= 10; and x1>= 0, x2>= 0
 Assuming u as a multiplier, which of the following is not a valid KKT Condition?
      i. x1(20 - 4x1 - u) = 0
     ii. x2(25 - 10x2 - u) = 0
     iii. u(x1 + x2 - 10) = 0
     iv. u(x1 + x2) = 0
```


Consider Question 11 again. It is additionally given that x1 > 0 and x2 > 0. Which of the following relation will then not be directly implied from the KKT Conditions?

```
i. x1 + x2 = 10
    ii. u = 20 - 4x1
   iii. u = 25 - 10x2
   iv. x1 + x2 <= 10
   ○ i.
   🔘 іі
   🔘 iii.
   🔘 iv.
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 i.
                                                                                  1 point
13)
Consider a Constrained NLP Problem with equality constraint as follows:
Max f(x1, x2) = 20x1 - 2x1^2 + 25x2 - 5x2^2 s.t. x1 + x2 = 10; and x1 \ge 0, x2 \ge 0
Can this problem be solved with KKT Conditions?
    i. Yes, it can be solved by KKT Conditions, but by taking x1+x2 <= 10
   ii. Yes, it can be solved by KKT Conditions, but by taking x1+x2 >= 10
   iii.
        No, it cannot be solved by KKT Conditions
   iv. Yes, It can be solved by KKT Conditions
   🔘 i
   🔘 іі.
   🔘 iii.
   🔵 iv.
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
iv.
                                                                                  1 point
14)
```

Constraints in a Quadratic problem are:	
i. Linear functions	
ii. Quadratic functions	
iii. Polynomial functions	
iv. None of the above	
 i. ii. iii. iv. No, the answer is incorrect. Score: 0 Accepted Answers:	
i.	
15) 1 p	oint
While using Modified Simplex method for Quadrating Programming Problems, we	have
i. All constraints are linear	
ii. Some of the constraints are linear	
iii. All constraints are nonlinear except the complimentary condition	
iv. All constraints are linear except the complimentary condition	
• і.	
🔘 іі.	
🔘 іі.	
o iv.	
No, the answer is incorrect.	
Score: 0	
Accepted Answers: iv.	
Previous Page End	