ourses » Selected	Topics in Decision Modeling
Init 5 - We	Announcements Course Ask a Question Progress Mentor FAQ
Course outline	Week 4 Assignment 4
How to access the portal	As per our records you have not submitted this assignment.
Week 1	solving Integer Linear Programming problems?
Week 2	i. Exhaustive enumenration generates all possible integer solutions
Week 3	ii. Exhaustive enumenration evaluates all possible integer solutions
Week /	\bigcirc iii. Exhaustive enumenration chooses the optimal among all possible integer solutions
 Lecture 16 : Exhaustive Enumeration and Branch and Bound Techniques 	No, the answer is incorrect. Score: 0 Accepted Answers: iv. Exhaustive enumenration cannot gurantee an optimal solution
Lecture 17 : Branch and Bound Technique	 2) Total number of enumerations required for a 0-1 knapsack problem with 5 binary variables will <i>1 po</i> be: i. 10
 Lecture 18 : Assignment and Travelling Salesman Problem 	 ii. 16 iii. 25 iv. 32
 Lecture 19 : Travelling Salesman Problem (Contd.) 	No, the answer is incorrect. Score: 0 Accepted Answers: <i>iv. 32</i>
Lecture 20 : Heuristic Methods for Integer Programming	3) Number of basic steps in the Branch and Bound algorithm are: 1 po i. 2 ii. 3
Lecture Material	🔘 iii. 4

Week 6	i. By Relaxing one or more constraints	
Week 7	ii. Considering Non-negativity constraints	
Week 8	 iii. By Linear Programming relaxation iv. None of the above 	
Download Videos	No, the answer is incorrect.	
Assignment Solution	Score: 0 Accepted Answers: iii. By Linear Programming relaxation	
	⁵⁾ Value of Z for the following problem will be:	1 point
	Maximize $Z = 3x + 4y$ subject to $x + y \le 4$; x and y are binary	
	i. 3 ii. 4 iii. 7	

No, the answer is incorrect. Score: 0 Accepted Answers: iii.

iv.

i.
 ii.
 iii.
 iv.

12

6)

1 point

Suppose we have to find a bound (Column wise) for the following Assignment proble being solved for minimization. The bound will be:

	m/c 1	m/c 2	m/c 3	m/c 4
Job A	14	8	34	14
Job B	12	10	28	32
Job C	22	18	8	26
Job D	11	24	21	21

- i. 41 Infeasible
- ii. 41 Feasible
- iii. 43 Infeasible
- iv. 43 Feasible

```
i.
ii.
iii.
iv.

No, the answer is incorrect.
Score: 0
Accepted Answers:
```

i.

2 of 5

7) Consider Question 6 again. Having found the bound for the total solution, we need to find the **1** point branches. Number of such branches will be:

\bigcirc	i. 2
\bigcirc	ii. 3
\bigcirc	iii. 4
\bigcirc	iv. 5

No, the answer is incorrect. Score: 0 Accepted Answers:

III. 4

8) While finding optimal solution for a Travelling Salesman problem, sub-tours are to be blocked **1** point because:

i. All sub-tours cannot be found

ii. Some sub-tours are not possible to cover

iii. Travelling Salesman problem considers only some sub-tours, not all

iv. Travelling Salesman problem considers only complete tours, not sub-tours

No, the answer is incorrect.	
Score: 0	
Accepted Answers:	

iv. Travelling Salesman problem considers only complete tours, not sub-tours

9) It is known that solution of the corresponding Assignment Problem provides a bound for a **1** point Travelling Solution Problem. Hence, the optimal solution for a Travelling Salesman Problem and the corresponding Assignment problem will be:

i. Always same			
ii. Always different			
iii. Sometime same			
iv. Not related at all			
No, the answer is incorrect.			
Score: 0			

Accepted Answers: *iii. Sometime same*

10)

1 point

Consider a Travelling Salesman Problem with 4 cities. The distances between the cities a as given below:

	А	В	С	D
Α	-	5	6	8
В	6	-	6	5
С	7	4	-	7
D	5	4	6	-

The minimum complete tour length for a Travelling Salesman problem will be:

- 🔘 i. 20
- 🔘 ii. 21
- 🔵 iii. 22

answer is incorrect. d Answers: er the Travelling Salesman Problem of Question 10. The optimal tour for the minimum <i>1 poin</i> will be: A-B-C-D-A A-C-B-D-A . A-B-D-C-A . A-B-D-C-A : A-C-D-B-A answer is incorrect.
d Answers: er the Travelling Salesman Problem of Question 10. The optimal tour for the minimum <i>1 poin</i> will be: A-B-C-D-A A-C-B-D-A . A-B-D-C-A : A-C-D-B-A answer is incorrect.
er the Travelling Salesman Problem of Question 10. The optimal tour for the minimum 1 poin will be: A-B-C-D-A A-C-B-D-A . A-B-D-C-A : A-C-D-B-A answer is incorrect.
er the Travelling Salesman Problem of Question 10. The optimal tour for the minimum 1 poin will be: A-B-C-D-A A-C-B-D-A . A-B-D-C-A : A-C-D-B-A answer is incorrect.
A-B-C-D-A A-C-B-D-A . A-B-D-C-A : A-C-D-B-A answer is incorrect.
A-C-B-D-A . A-B-D-C-A : A-C-D-B-A answer is incorrect. d Answers:
. A-B-D-C-A : A-C-D-B-A answer is incorrect. d Answers:
: A-C-D-B-A answer is incorrect. d Answers:
answer is incorrect. d Answers:
d Answers:
-D-A
er the Travelling Salesman Problem of Question 10. In order to solve the problem, we 1 point lace distance between A to A, B to B, C to C, and D to D by:
0
Lowest distance in the matrix
. Highest distance in the matrix
. A very high value M
answer is incorrect.
d Answers:
r high value M
Solving a Travelling Salesman Problem of 6 cities, unique assignment obtained after 1 poin ion is: A-D, B-C, C-E, D-B, E-F and F-A. What can you infer about the optimal solution of the Galesman Problem (TS Problem)?
The unique assignments constitute an optimal solution
The unique assignments are not feasible
. The unique assignments are feasible but do not constitute an optimal solution
. None of the above
answer is incorrect.
d Answers: ique assignments constitute an optimal solution
Solving a Travelling Salesman Problem of 6 cities by Branch and Bound Technique, 1 poin gnments obtained after some iteration are: A-D, B-C, C-A, D-B, E-F and F-E. What can you the optimal solution of the Travelling Salesman Problem (TS Problem)?
The unique assignments constitute an optimal TS Problem solution
The unique assignments constitute a TS Problem solution which is not optimal
. The unique assignments do not constitute a feasible TS Problem solution
. None of the above

1 point
าป