## Unit 4 - Week 3



## Assignment 3

The due date for submitting this assignment has passed. Due on 2018-09-05, 23:59 IST. As per our records you have not submitted this assignment.

## 1) Why study Integer Linear Programming? <br> 1 point <br> i. It is the most updated method to solve Linear Programming problems <br> ii. All types of real world problems can be solved by Integer Linear Programming <br> - iii. When the Decision Variables in a Linear Programming become integers <br> iv. When the objective function returns an integer value

No, the answer is incorrect.
Score: 0
Accepted Answers:
iii. When the Decision Variables in a Linear Programming become integers
2) In a 'Fixed Charge' problem, machines are rented for manufacturing 3 types of products - P1, 1 point P2, P3. There are rents for the machines which are like fixed charges and there are variable costs per unit of products produced. If $100 \mathrm{P} 1,200 \mathrm{P} 2$ and 0 (zero) P3 are produced, then:i. Fixed Charge is applicable for all the products $-\mathrm{P} 1, \mathrm{P} 2$ and P 3ii. Fixed Charge is applicable for P1 and P2 onlyiii. Fixed Charge is applicable for P3 onlyiv. Fixed Charge is applicable for none

No, the answer is incorrect.
Score: 0
Accepted Answers:
ii. Fixed Charge is applicable for P1 and P2 only
3) Which of the following conditions is true for Mixed Integer Programming?

1 pointi. All the decision variables are integersii. All the decision variables are binaryiii. Some decision variables are integers, others may assume any value

- iv. Some decision variables are integers, others are binary
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -

No, the answer is incorrect.
Score: 0
Accepted Answers:
ii. Product Mix Problem
5)

1 point
There are 4 Projects as given in the table below:

| Project | Cost | Return after 2 Years |
| :---: | :---: | :---: |
| P1 | 2000 | 5000 |
| P2 | 3000 | 6000 |
| P3 | 4000 | 7000 |
| P4 | 5000 | 8000 |

The budget is Rs. 25000 . Total return after 2 years should be maximized. $x_{i}^{\prime} s$ are the binc decision variables representing the choice of the projects (1 means the Project is chosen). project can be chosen only once. The objective function of the ILP problem will be:i. Max Z = $5000 \times 1+6000 \times 2+7000 \times 3+8000 \times 4$ii. $\operatorname{Min} Z=5000 \times 1+6000 \times 2+7000 \times 3+8000 \times 4$iii. $\operatorname{Max} Z=2000 \times 1+3000 \times 2+4000 \times 3+5000 \times 4$iv. Min $Z=2000 \times 1+3000 \times 2+4000 \times 3+5000 \times 4$

No, the answer is incorrect.
Score: 0
Accepted Answers:
i. $\operatorname{Max} Z=5000 \times 1+6000 \times 2+7000 \times 3+8000 \times 4$
6) If at least 2 projects are be selected for the problem given in Question 5, then the additional

1 point constraint to be added will be:i. $x 1+x 2+x 3+x 4<=2$ii. $x 1+x 2+x 3+x 4>=2$iii. $x 1+x 2+x 3+x 4=2$iv. $2(x 1+x 2+x 3+x 4)=2$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\text { ii. } x 1+x 2+x 3+x 4>=2
$$

7) It is given in Question 5 that if Project P1 is selected then Project P3 cannot be selected and

1 point vice versa, then the additional constraint to be added will be:i. $x 1+x 3=x 2+x 4$ii. $x 1+x 3=0$iii. x1 > x3iv. $x 1+x 3=1$

No, the answer is incorrect.

Score: 0
Accepted Answers:
iv. $x 1+x 3=1$
8) It is given in Question 5 that at least 1 project must be selected out of projects P1, P2, and P3, 1 point then the additional constraint to be added will be:i. $x 1+x 2+x 3=1$ii. $x 1+x 2+x 3>=1$iii. $x 1+x 2+x 3=x 4$iv. $x 1+x 2+x 3>0$

No, the answer is incorrect.
Score: 0
Accepted Answers:
ii. $x 1+x 2+x 3>=1$
9)

## 1 point

A promoter is in the business of buying and selling of vacant land, ordinary flats and furnishe flats in a city. Rs. 200 L is available with the promoter for this business. Relevant Data are follows:

| Land: | Cost: Rs. $5 \mathrm{~L} /$ decimal; | Selling price: Rs. $6.5 \mathrm{~L} /$ decimal |
| :--- | :--- | :--- |
| Ordinary flat: | Cost: Rs. $10 \mathrm{~L} /$ Unit; | Selling price: Rs. $15 \mathrm{~L} /$ unit |
| Furnished flat: | Cost: Rs. $12 \mathrm{~L} /$ Unit; | Selling price: Rs. $16.5 \mathrm{~L} /$ unit |

Maximum Available resources: Land: 3.2 decimal, Ordinary flats: 5, Furnished flats: 6
Decision variables: $x 1=$ Land in decimal; $x 2=$ No. of Ordinary flats; $x 3=$ No. of Furnished flats.

This is a problem of:i. Pure Integer programmingii. Binary Integer programmingiii. Non Integer Programmingiv. Mixed Integer programming

No, the answer is incorrect.
Score: 0
Accepted Answers:
iv. Mixed Integer programming
10)Consider Question 9. The objective function will be:

1 pointi. $\operatorname{Min} Z=5 \times 1+10 \times 2+12 \times 3$ii. $\operatorname{Max} Z=5 \times 1+10 \times 2+12 \times 3$iii. $\operatorname{Max} Z=1.5 \times 1+5 \times 2+4.5 \times 3$
iv. $\operatorname{Max} Z=6.5 \times 1+15 \times 2+16.5 \times 3$

No, the answer is incorrect.
Score: 0
Accepted Answers:
iii. $\operatorname{Max} Z=1.5 \times 1+5 \times 2+4.5 \times 3$
11)Consider Question 9. Which of the following is a valid constraint for the problem?

1 point
(1). $5 \times 1+10 \times 2+12 \times 3<=200$
ii. $6.5 \times 1+15 \times 2+16.5 \times 3<=200$iii. $3 \times 1+5 \times 2+6 \times 3<=200$iv. $6.5 \times 1+15 \times 2+16.5 \times 3>=200$

No, the answer is incorrect.
Score: 0
Accepted Answers:
i. $5 \times 1+10 \times 2+12 \times 3<=200$
12)Which of the following is false in the context of solving Integer Linear Programming problems 1 point using Cutting Plane Method?i. The present non-integer optimal solution is cut off by the cutting planeii. No feasible integer solution is cut off by the cutting planeiii. All feasible integer solutions are preservediv. None of the above are true

No, the answer is incorrect.
Score: 0
Accepted Answers:
iv. None of the above are true
13)Which of the following assumptions of Linear Programming is not obeyed in Integer Linear Programming?i. Linearityii. Additivityiii. Continuityiv. Finiteness

No, the answer is incorrect.
Score: 0
Accepted Answers:
iii. Continuity
14)

An in-between simplex table for a integer linear programming problem is as given below:

## Simplex Table 2

| $\mathrm{Ci} / \mathrm{Cj}$ | Basis | Values | 2 | 1 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | X1 | X2 | X3 | X4 |
| 0 | $\mathrm{X}_{3}$ | $31 / 3$ | 0 | $11 / 3$ | 1 | $-2 / 3$ |
| 2 | $\mathrm{X}_{1}$ | $10 / 3$ | 1 | $2 / 3$ | 0 | $1 / 3$ |
| $\mathrm{Cj}-\mathrm{Zj}$ |  |  |  | 0 | $-1 / 3$ | 0 |i. $2 / 3 \times 2+1 / 3 \times 4<=1 / 3$ii. $2 / 3 \times 2+1 / 3 \times 4>=1 / 3$iii. $2 / 3 \times 2+1 / 3 \times 4>=10 / 3$iv. $2 / 3 \times 2+1 / 3 \times 4<=10 / 3$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\text { ii. } 2 / 3 \times 2+1 / 3 \times 4>=1 / 3
$$

15)Suppose we have a non-integer optimal solution for a Linear Programming problem. We round 1 point off the non-integer optimal solution to an integer solution. Now this integer solution may not be an optimal
solution for the corresponding Integer Linear programming problem because:i. The integer solution may not be feasibleii. The integer solution may not be binaryiii. The integer solution needs to satisfy additional constraintsiv. None of the above

No, the answer is incorrect.
Score: 0
Accepted Answers:
i. The integer solution may not be feasible

