

Tuesday 16 October 2018 05:01 PM

Selected Topics in Decision Modeling - - Unit 4 ...

There are 4 Projects as given in the table below:

Project	Cost	Return after 2 Years 5000	
P1	2000		
P2	3000	6000	
P3	4000	7000	
P4	5000	8000	

The budget is Rs. 25000. Total return after 2 years should be maximized. x_i 's are the bina decision variables representing the choice of the projects (1 means the Project is chosen). project can be chosen only once. The objective function of the ILP problem will be:

i. Max Z = 5000 x1+ 6000 x2+ 7000 x3+ 8000 x4

ii. Min Z = 5000 x1+ 6000 x2+ 7000 x3+ 8000 x4

iii. Max Z = 2000 x1+ 3000 x2+ 4000 x3+ 5000 x4

iv. Min Z = 2000 x1+ 3000 x2+ 4000 x3+ 5000 x4

No, the answer is incorrect.

Score: 0

Accepted Answers:

i. Max Z = 5000 x1+ 6000 x2+ 7000 x3+ 8000 x4

6) If at least 2 projects are be selected for the problem given in Question 5, then the additional **1** point constraint to be added will be:

i. x1+ x2+ x3+ x4 <= 2
ii. x1+ x2+ x3+ x4 >= 2
iii. x1+ x2+ x3+ x4 = 2
iii. x1+ x2+ x3+ x4 = 2
iv. 2(x1+ x2+ x3+ x4) = 2
No, the answer is incorrect.

Score: 0 Accepted Answers:

ii. $x1+x2+x3+x4 \ge 2$

7) It is given in Question 5 that if Project P1 is selected then Project P3 cannot be selected and **1** point vice versa, then the additional constraint to be added will be:

i. x1+ x3 = x2+ x4
ii. x1+ x3 = 0
iii. x1 > x3
iv. x1+ x3 = 1

No, the answer is incorrect.

Score: 0

Accepted Answers: *iv.* x1+x3 = 1

8) It is given in Question 5 that at least 1 project must be selected out of projects P1, P2, and P3, **1** *point* then the additional constraint to be added will be:

i. x1+x2+x3 = 1
 ii. x1+x2+x3 >= 1
 iii. x1+x2+x3 >= 1
 iii. x1+ x2+x3 = x4
 iv. x1 + x2+x3 > 0

No, the answer is incorrect. Score: 0

Accepted Answers: *ii.* x1+x2+x3 >= 1

9)

1 point

A promoter is in the business of buying and selling of vacant land, ordinary flats and furnishe flats in a city. Rs. 200 L is available with the promoter for this business. Relevant Data are follows:

Land:	Cost: Rs. 5 L/decimal;	5 L/decimal; Selling price: Rs. 6.5 L/decimal	
Ordinary flat:	Cost: Rs. 10 L/Unit;	Selling price: Rs. 15 L/unit	
Furnished flat:	Cost: Rs. 12 L/Unit;	Selling price: Rs. 16.5 L/unit	

Maximum Available resources: Land: 3.2 decimal, Ordinary flats: 5, Furnished flats: 6

Decision variables: x1= Land in decimal; x2= No. of Ordinary flats; x3= No. of Furnished flats.

This is a problem of:

i. Pure Integer programming	
ii. Binary Integer programming	
iii. Non Integer Programming	
iv. Mixed Integer programming	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
iv. Mixed Integer programming	
10)Consider Question 9. The objective function will be:	1 point
i. Min Z = 5 x1+ 10 x2+ 12x3	
ii. Max Z = 5 x1+ 10 x2+ 12x3	
iii. Max Z =1.5 x1+ 5 x2+ 4.5x3	
iv. Max Z = 6.5 x1+ 15 x2+ 16.5x3	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
iii. Max Z =1.5 x1+ 5 x2+ 4.5x3	
11)Consider Question 9. Which of the following is a valid constraint for the problem?	1 point
○ i. 5 x1+ 10 x2+ 12x3 <= 200	

ii. 6.5 x1+ 15 x2+ 16.5x3 <= 200</p>

── iii. 3x1+ 5 x2+ 6x3 <= 200	
○ iv. 6.5 x1+ 15 x2+ 16.5x3 >= 200	
No, the answer is incorrect. Score: 0	
Accepted Answers: <i>i</i> . 5 x1+ 10 x2+ 12x3 <= 200	
12)Which of the following is false in the context of solving Integer Linear Programming problems sing Cutting Plane Method?	1 poin
i. The present non-integer optimal solution is cut off by the cutting plane	
ii. No feasible integer solution is cut off by the cutting plane	
iii. All feasible integer solutions are preserved	
iv. None of the above are true	
No, the answer is incorrect. Score: 0	
Accepted Answers: iv. None of the above are true	
13)Which of the following assumptions of Linear Programming is not obeyed in Integer Linear rogramming?	1 point
i. Linearity	
ii. Additivity	
iii. Continuity	
iv. Finiteness	
No, the answer is incorrect. Score: 0	
No, the answer is incorrect.	
No, the answer is incorrect. Score: 0 Accepted Answers:	1 point

Ci / Cj Bas	Basis	asis Values	2	1	0	0
26.2			X1	X2	X3	X4
0	X ₃	31/3	0	11/3	1	-2/3
2	X	10/3	1	2/3	0	1/3
	Cj – Zj		0	-1/3	0	-2/3

i. 2/3 x2 + 1/3 x4 < = 1/3</p>

- ii. 2/3 x2 + 1/3 x4 > = 1/3
- iii. 2/3 x2 + 1/3 x4 > = 10/3
- iv. 2/3 x2 + 1/3 x4 < = 10/3</p>

No, the answer is incorrect.

Score: 0

Accepted Answers: *ii.* 2/3 x2 + 1/3 x4 > = 1/3

15)Suppose we have a non-integer optimal solution for a Linear Programming problem. We round **1** point off the non-integer optimal solution to an integer solution. Now this integer solution may not be an optimal

solution for the corresponding Integer Linear programming problem because:

i. The integer solution may not be feasible

ii. The integer solution may not be binary

iii. The integer solution needs to satisfy additional constraints

iv. None of the above

No, the answer is incorrect.

Score: 0

Accepted Answers:

i. The integer solution may not be feasible

Previous Page

End