Announcements Course Ask a Question Progress Mentor

Unit 5 - Week 4

Course
 outline

How to access
the portal

Week 1

Week 2

Week 3

Week 4

Lecture 20:
Introduction to Multiple Linear Regression (MLR)

Lecture 21:
Sampling Distribution of
Regression Coefficients

Lecture 22:
Multiple Linear
Regression:
Hypothesis
Testing and
Model
Adequacy Test

- Lecture 23:

Multiple Linear
Regression:
Model
Diagnostics and
Testing for Lack
of Fit

- Lecture 24:

Regression
Approach to
ANOVA
Feedback for Week 4

Quiz :
week4_assignment4

Week 5

week4_assignment4

The due date for submitting this assignment has passed. Due on 2018-02-21, 23:59 IST.

Submitted assignment

Questions 1-4 are based on the following case:
The tensile strength of a paper product is related to the amount of hardwood in the pulp. Ten samples are produced in the pilot plant, and the data obtained are shown in the following table.

Strength	Percent Hardwood	Strength	Percent Hardwood
160	10	181	20
171	15	188	25
175	15	193	25
182	20	195	28
184	20	200	30

1) The regression equation is

2 points
(i) Strength $=144+1.88$ Hardwood
(ii) Strength $=-144+1.88$ Hardwood
(iii) Strength $=144-1.88$ Hardwood
(iv) None of these

No, the answer is incorrect.
Score: 0
Accepted Answers:
(i) Strength $=144+1.88$ Hardwood
${ }^{2)}$ The value of R^{2} is 2 points
(i) 0.97
(ii) 0.95
(iii) 0.98
(iv) None of these

No, the answer is incorrect.
Score: 0
Accepted Answers:
(i) 0.97
${ }^{3)}$ The value of $R^{2}(\operatorname{adj})$ is 2 points
(i) 0.95
(ii) 0.966
(iii) 0.98
(iv) None of these

Week 6

Week 7

Week 8

Week 9

Week 10

Week 11

Week 12

DOWNLOAD VIDEOS

No, the answer is incorrect.
Score: 0
Accepted Answers:
(ii) 0.966
4) 95 percent confidence interval on the parameter β_{1} is

2 points
(i) $1.60<\beta_{1}<2.15$
(ii) $1.69<\beta_{1}<2.05$
(iii) $1.59<\beta_{1}<2.05$
(iv) $1.69<\beta_{1}<2.15$

No, the answer is incorrect.
Score: 0
Accepted Answers:
(i) $1.60<\beta_{1}<2.15$

Questions 5-7 are based on the following case:

A study was performed on wear of a bearing y and its relationship to $x 1=$ oil viscosity and $x 2=$ load. The following data were obtained.

y	x_{1}	x_{2}
193	1.6	851
230	15.5	816
172	22.0	1058
91	43.0	1201
113	33.0	1357
125	40.0	1115

5) The regression equation is

2 points
(i) $\mathrm{Y}=351-1.27 \mathrm{x} 1-0.154 \mathrm{x} 2$
(ii) $\mathrm{Y}=351+1.27 \mathrm{x} 1+0.154 \mathrm{x} 2$
(iii) $\mathrm{Y}=351-1.27 \mathrm{x} 1+0.154 \mathrm{x} 2$
(iv) None of these

No, the answer is incorrect.
Score: 0
Accepted Answers:
(i) $Y=351-1.27 \times 1-0.154 \times 2$
${ }^{6)}$ The value of R^{2} is
2 points
(i) 0.862
(ii) 0.906
(iii) 0.98
(iv) None of these

No, the answer is incorrect.
Score: 0
Accepted Answers:
(i) 0.862
${ }^{7}$) The value of R^{2} (adj) is
2 points
(i) 0.67
(ii) 0.77
(iii) 0.84
(iv) None of these

No, the answer is incorrect.
Score: 0
Accepted Answers:
(ii) 0.77
8) Hat matrix is
(i) $H=X^{T}\left(X^{T} X\right)^{-1} X$
(ii) $H=X\left(X^{T} X\right)^{-1} X^{T}$
(iii) $H=X\left(X^{T} X\right)^{T} X^{T}$
(iv) $H=X\left(X^{-1} X\right)^{T} X^{T}$

No, the answer is incorrect.
Score: 0
Accepted Answers:
(ii) $H=X\left(X^{T} X\right)^{-1} X^{T}$
${ }^{9)}$ Adjusted R^{2} statistics can be defined as
(i) $R^{2}(a d j)=1-\frac{(n-1) S S_{E}}{(n-p) S S_{T}}$
(ii) $R^{2}($ adj $)=1-\frac{(n-p) S S_{E}}{(n-1) S S_{T}}$
(iii) $R^{2}($ adj $)=1-\frac{(n-1) S S_{T}}{(n-p) S S_{E}}$
(iv) $R^{2}($ adj $)=1-\frac{(n-1) S S_{R}}{(n-p) S S_{T}}$

No, the answer is incorrect.
Score: 0
Accepted Answers:
(i) $R^{2}($ adj $)=1-\frac{(n-1) S S_{E}}{(n-p) S S_{T}}$
${ }^{10} \mathrm{If}_{\mathrm{f}} \mathrm{SS}_{\mathrm{E}}=0.16$ and $\mathrm{SS}_{\mathrm{T}}=0.52$, then what is the value of R^{2}
(i) $R^{2}=0.308$
(ii) $\mathrm{R}^{2}=0.692$
(iii) $R^{2}=0.444$
(iv) $\mathrm{R}^{2}=3.25$

No, the answer is incorrect.
Score: 0
Accepted Answers:
(ii) $R^{2}=0.692$

Previous Page

A project of
NPTEL
National Programme on Technology Enhanced Learning

In association with

Funded by
Government of India
Ministry of Human Resource Development

Powered by

