Unit 10 - Week 8

Course outline	
How to access the portal	
Week 0	
Week 1	
Week 2	
Week 3	
Week 4	
Week 5	
Week 6	
Week 7	
Week 8	
 Lecture 26: Machine Learning Part 3 	
 Lecture 27: Machine Learning Part 4 	
 Lecture 28: Machine Learning Part 5 	
R codes	
O Quiz: Assignment - 8	
O Solutions - Assignment 8	

Feedback form for week 8

Assignment - 8	
The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.	Due on 2019-10-23, 23:59 IST.
With a decrease in the flexibility of the model, the interpretability of the model will	2 points
oincrease decrease	
No, the answer is incorrect.	
Score: 0 Accepted Answers: increase	
2) In the process of in-sample validation, the test dataset is a part of train dataset.	2 points
☐ True	
False	
No, the answer is incorrect. Score: 0 Accepted Answers: True	
Choose the correct statement from below.	2 points
 In the k-Nearest neighbor algorithm, the variance will increase with a high value of the parameter 'k'. In the k-Nearest neighbor algorithm, the bias will increase with a high value of the parameter 'k'. In the k-Nearest neighbor algorithm, the bias will remain unchanged with a high value of the parameter 'k'. 	
No, the answer is incorrect.	
Score: 0 Accepted Answers: In the k-Nearest neighbor algorithm, the bias will increase with a high value of the parameter 'k'.	
4) Given P(A)= 0.3, P(B)=0.2 and P(B/A) = 0.4. Evaluate P(A/B).	2 points
0.9 0.7 0.6 0.25	
No, the answer is incorrect. Score: 0	
Accepted Answers: 0.6	
5) The Naive Bayes algorithm is useful for online machine learning applications.	2 points
○ True ○ False	
No, the answer is incorrect. Score: 0	
Accepted Answers: True	