Answer#1

1.

a. 3-Period Moving Average:
$$F_{June} = (A_{March} + A_{April} + A_{May})/3 = (38+39+43)/3 = 40$$

5-Period Moving Average: $F_{June} = (A_{January} + A_{February} + A_{March} + A_{April} + A_{May})/5$
= $(32+41+38+39+43)/5 = 38.6$

b. Naïve: $F_{June} = A_{May} = 43$

Naïve: F_{July}=A_{June}= 41

d.

Month	Actual	3-Period	Absolute	5-Period	Absolute	Naïve	Absolute
		Moving	Error	Moving	Error		Error
		Average		Average			
January	32						
February	41					32	9
March	38					41	3
April	39	37	2			38	1
May	43	39.33	3.67			39	4
June	41	40	1	38.6	24	43	2

MAD(3-period moving average) =
$$\frac{\sum |Actual - Forecast|}{n} = (2+3.67+1)/3 = 2.22$$
MAD(5-period moving average) =
$$\frac{\sum |Actual - Forecast|}{n} = 2.4/1 = 2.4$$
MAD(Naïve) =
$$\frac{\sum |Actual - Forecast|}{n} = (9+3+1+4+2)/5 = 3.8$$

The 3-period moving average provides the best historical fit using the MAD criterion and would be better to use.

e.

Month	Actual	3-Period	Squared	5-Period	Squared	Naïve	Squared
		Moving	Error	Moving	Error		Error
		Average		Average			
January	32						
February	41					32	81
March	38					41	9
April	39	37	4			38	1
May	43	39.33	13.47			39	16
June	41	40	1	38.6	5.76	43	4

MSE(3-period moving average) =
$$\frac{\sum (Actual - Forecast)^2}{n-1}$$
 = (4+13.47+1)/2 = 9.24

MSE(5-period moving average)= $\frac{\sum (Actual - Forecast)^2}{n-1}$: Not possible to compute

since there are not enough observations (i.e., n = 1).

$$MSE(Naïve) = \frac{\sum (Actual - Forecast)^2}{n-1} = (81+9+1+16+4)/4 = 111/4 = 27.75$$

The 3-period moving average provides the best historical fit using the MSE criterion.

2.

Forecasts using $\alpha = 0.1$:

		Exponential	Absolute
Week	Demand	Smoothing	Error
1	330	330	
2	350	330	20
3	320	332	12
4	370	330.8	39.2
5	368	334.72	33.28
6	343	338.048	4.952
		MAD:	21.89

Forecasts using $\alpha = 0.7$:

		Exponential	Absolute
Week	Demand	Smoothing	Error
1	330	330	
2	350	330	20
3	320	344	24
4	370	327.2	42.8
5	368	357.16	10.84
6	343	364.748	21.748
		MAD:	23.88

Using $\alpha = 0.1$ provides a better historical fit based on the MAD criterion.

Given: $T_4 = 20$, $A_5 = 90$, $S_4 = 85$

Smoothing the level of the series:

$$S5 = \alpha A_5 + (1 - \alpha)(S_4 + T_4) = 0.20(90) + 0.80(85 + 20) = 102$$

Step 2:

Smoothing the trend:

$$T5 = \beta(S_5 - S_4) + (1 - \beta)T_4 = 0.10(102 - 85) + 0.90(20) = 19.7$$

Step 3: Forecast Including Trend

$$FIT_6 = S_5 + T_5 = 102 + 19.7 = 121.7$$

The prices are not arbitrage-free. To show that Mary's portfolio yields arbitrage profit,

	Time 0		Time T			
	Time o	$S_T < 40$	$40 \le S_T < 50$	50≤ S _T < 55	$S_T \ge 55$	
Buy 1 call Strike 40	- 11	0	$S_T - 40$	$S_T - 40$	$S_T - 40$	
Sell 3 calls Strike 50	+ 18	0	0	$-3(S_T - 50)$	$-3(S_T-50)$	
Lend \$1	-1	e^{T}	e^{rT}	e^{T}	e^{T}	
Buy 2 calls strike 55	-6	0	0	0	$2(S_T - 55)$	
Total	0	$e^{T} > 0$	$e^{T} + S_{T} - 40$ > 0	$e^{rT} + 2(55 - S_T)$ > 0	$e^{T} > 0$	

Peter's portfolio makes arbitrage profit, because:

	Time-0 cash flow	Time-T cash flow
Buy 2 calls & sells 2 puts	2(-3+11)=16	$2(S_T - 55)$
Strike 55	,	
Buy 1 call & sell 1 put	-11 + 3 = -8	$S_T - 40$
Strike 40		
Lend \$2	-2	2e ^{rT}
Sell 3 calls & buy 3 puts	3(6-8)=-6	$3(50 - S_T)$
Strike 50	,	
Total	0	2e ^{rT}

b)

The payoff at the contract maturity date is

$$\pi \times (1 - y\%) \times \text{Max}[S(T)/S(0), (1 + g\%)^T]$$
= $\pi \times (1 - y\%) \times \text{Max}[S(1)/S(0), (1 + g\%)^T]$ because $T = 1$
= $[\pi/S(0)](1 - y\%) \text{Max}[S(1), S(0)(1 + g\%)]$
= $(\pi/100)(1 - y\%) \text{Max}[S(1), 103]$ because $g = 3 \& S(0) = 100$
= $(\pi/100)(1 - y\%) \{S(1) + \text{Max}[0, 103 - S(1)]\}$.

Now, Max[0, 103 - S(1)] is the payoff of a one-year European put option, with strike price \$103, on the stock index; the time-0 price of this option is given to be is \$15.21. Dividends are incorporated in the stock index (i.e., $\delta = 0$); therefore, S(0) is the time-0 price for a time-1 payoff of amount S(1). Because of the no-arbitrage principle, the time-0 price of the contract must be

$$(\pi/100)(1 - y\%)\{S(0) + 15.21\}$$

= $(\pi/100)(1 - y\%) \times 115.21$.

Therefore, the "break-even" equation is

$$\pi = (\pi/100)(1 - y\%) \times 115.21,$$

OΓ

$$y\% = 100 \times (1 - 1/1.1521)\% = 13.202\%$$

a)

First, we construct the two-period binomial tree for the stock price.

The calculations for the stock prices at various nodes are as follows:

$$S_u = 20 \times 1.2840 = 25.680$$

 $S_d = 20 \times 0.8607 = 17.214$
 $S_{uu} = 25.68 \times 1.2840 = 32.9731$
 $S_{ud} = S_{du} = 17.214 \times 1.2840 = 22.1028$
 $S_{dd} = 17.214 \times 0.8607 = 14.8161$

The risk-neutral probability for the stock price to go up is

$$p^* = \frac{e^{rh} - d}{u - d} = \frac{e^{0.05} - 0.8607}{1.2840 - 0.8607} = 0.4502$$
.

Thus, the risk-neutral probability for the stock price to go down is 0.5498.

If the option is exercised at time 2, the value of the call would be

$$C_{uu} = (32.9731 - 22)_{+} = 10.9731$$

 $C_{ud} = (22.1028 - 22)_{+} = 0.1028$
 $C_{dd} = (14.8161 - 22)_{+} = 0$

If the option is European, then $C_u = e^{-0.05}[0.4502C_{uu} + 0.5498C_{ud}] = 4.7530$ and $C_d = e^{-0.05}[0.4502C_{ud} + 0.5498C_{dd}] = 0.0440$.

But since the option is American, we should compare C_u and C_d with the value of the option if it is exercised at time 1, which is 3.68 and 0, respectively. Since $3.68 \le 4.7530$ and $0 \le 0.0440$, it is not optimal to exercise the option at time 1 whether the stock is in the up or down state. Thus the value of the option at time 1 is either 4.7530 or 0.0440.

Finally, the value of the call is $C = e^{-0.05}[0.4502(4.7530) + 0.5498(0.0440)] = 2.0585.$

$$C(S, K, \sigma, r, T, \delta) = Se^{-\delta t} N(d_1) - Ke^{-rt} N(d_2)$$
(12.1)

with

$$d_1 = \frac{\ln(S/K) + (r - \delta + \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}$$
(12.2a)

$$d_2 = d_1 - \sigma \sqrt{T} \tag{12.2b}$$

Because S = 20, K = 25, $\sigma = 0.24$, r = 0.05, T = 3/12 = 0.25, and $\delta = 0.03$, we have

$$d_1 = \frac{\ln(20/25) + (0.05 - 0.03 + \frac{1}{2}0.24^2)0.25}{0.24\sqrt{0.25}} = -1.75786$$

and

$$d_2 = -1.75786 - 0.24\sqrt{0.25} = -1.87786$$

Using the Cumulative Normal Distribution Calculator, we obtain N(-1.75786) = 0.03939 and N(-1.87786) = 0.03020.

Hence, formula (12.1) becomes

$$C = 20e^{-(0.03)(0.25)}(0.03939) - 25e^{-(0.05)(0.25)}(0.03020) = 0.036292362$$

Cost of the block of 100 options = $100 \times 0.0363 = 3.63 .

OBJECTIVE

1	5	A+B
2	6	Е
3	7	С
4	8	D

9	Gold
10	The average return on Gold is much less than on the stock market
11	14% and 167.25
12	The optimal amount to invest in gold would drop

13	В
14	A
15	В