Answer\#1

1.

a. 3-Period Moving Average: $\mathrm{F}_{\text {hne }}=\left(\mathrm{A}_{\mathrm{March}}+\mathrm{A}_{\text {April }}+\mathrm{A}_{\mathrm{May}}\right) / 3=(38+39+43) / 3=40$

5-Period Moving Average: $\mathrm{F}_{\text {has }}=\left(\mathrm{A}_{\mathrm{J} \text { manary }}+\mathrm{A}_{\text {February }}+\mathrm{A}_{\text {March }}+\mathrm{A}_{\text {April }}+\mathrm{A}_{\text {May }}\right) / 5$
$=(32+41+38+39+43) / 5=38.6$
b. Naïve: $\mathrm{F}_{\text {Juac }}=\mathrm{A}_{\mathrm{May}}=43$
c. 3-Period Moving Average: $\mathrm{F}_{\text {July }}=\left(\mathrm{A}_{\text {Apgeil }}+\mathrm{A}_{\text {May }}+\mathrm{A}_{\mathrm{Jmas}}\right) / 3=(39+43+41) / 3=41$

$$
=(41+38+39+43+41) / 5=40.4
$$

Naïve: $F_{\text {July }}=A_{J u s}=41$
d.

Month	Actual	3-Period	Absolute	5-Period	Absolute	Naive	Absolute
		Moving	Error	Moving	Error		Error
		Average		Average			
January	32						
February	41					32	9
March	38					41	3
April	39	37	2			38	1
May	43	39.33	3.67			39	4
June	41	40	1	38.6	2.4	43	2

$$
\begin{aligned}
& \mathrm{MAD}(3 \text {-period moving average })=\frac{\sum \mid \text { Actual }- \text { Forecast } \mid}{n}=(2+3.67+1) / 3=2.22 \\
& \mathrm{MAD}(5 \text {-period moving average })=\frac{\sum \mid \text { Actual }- \text { Forecast } \mid}{n}=2.4 / 1=2.4 \\
& \mathrm{MAD}(\text { Naïve })=\frac{\sum \mid \text { Actual }- \text { Forecast } \mid}{n}=(9+3+1+4+2) / 5=3.8
\end{aligned}
$$

The 3-period moving average provides the best historical fit using the MAD criterion and would be better to use.
e.

Month	Actual	3-Period	Squared	5-Period	Squared	Naïve	Squared
		Moving	Error	Moving	Error		Error
		Average		Average			
January	32						
February	41					32	81
March	38					41	9
April	39	37	4			38	1
May	43	39.33	13.47			39	16
June	41	40	1	38.6	5.76	43	4

MSE(5-period moving average $)=\frac{\sum\left({\text { Actual }- \text { Forecast })^{2}}_{n-1}^{n}\right.}{\text { : Not possible to compute }}$ since there are not enough observations (i.e., $\mathrm{n}=1$).
MSE $($ Naïve $)=\frac{\sum(\text { Actual }- \text { Forecast })^{2}}{n-1}=(81+9+1+16+4) / 4=111 / 4=27.75$
The 3-period moving average provides the best historical fit using the MSE criterion.
2.

Forecasts using $\alpha=0.1$:

Week	Demand	Exponential	Absolute Error
1	330	330	
2	350	330	20
3	320	332	12
4	370	330.8	39.2
5	368	334.72	33.28
6	343	338.048	4.852
		MAD	21.89

Forecasts using $\alpha=0.7$:

Week	Demand	Exponential Smoothing	Absolute Error
1	330	330	
2	350	330	20
3	320	344	24
4	370	327.2	42.8
5	368	357.16	10.84
6	343	364.748	21.748
		MAD:	23.88

Using $\alpha=0.1$ provides a better historical fit based on the MAD criterion.
3.

Given: $\mathrm{T}_{4}=20, \mathrm{~A}_{5}=90, \mathrm{~S}_{4}=85$
Step 1:
Smoothing the level of the series:
$\mathrm{S} 5=\alpha \mathrm{A}_{5}+(1-\alpha)\left(\mathrm{S}_{4}+\mathrm{T}_{4}\right)=0.20(90)+0.80(85+20)=102$
Step 2:
Smoothing the trend:
$\mathrm{T} 5=\beta\left(\mathrm{S}_{5}-\mathrm{S}_{4}\right)+(1-\beta) \mathrm{T}_{4}=0.10(102-85)+0.90(20)=19.7$
Step 3:
Forecast Including Trend
$\mathrm{FIT}_{6}=\mathrm{S}_{5}+\mathrm{T}_{5}=102+19.7=121.7$

Answer\#2

a)

The prices are not arbitrage-free. To show that Mary's portfolio yields arbitrage profit,

	Time 0	Time T			
		$40 \leq S_{T}<50$	$50 \leq S_{T}<55$	$S_{T} \geq 55$	
Buy 1 call Strike 40	-11	0	$S_{T}-40$	$S_{T}-40$	$S_{T}-40$
Sell 1 c calls Strike 50	+18	0	0	$-3\left(S_{T}-50\right)$	$-3\left(S_{T}-50\right)$
Lend \$1	-1	e^{T}	$e^{T T}$	e^{T}	e^{T}
Buy 2 calls strike 55	-6	0	0	0	$2\left(S_{T}-55\right)$
Total	0	$e^{T}>0$	$e^{T}+S_{T}-40$ >0	$e^{T}+2\left(55-S_{T}\right)$ >0	$e^{T}>0$

Peter's portfolio makes arbitrage profit, because:

	Time-0 cash flow	Time- T cash flow
Buy 2 calls \& sells 2 puts Strike 55	$2(-3+11)=16$	$2\left(S_{T}-55\right)$
Buy 1 call \& sell 1 put Strike 40	$-11+3=-8$	$S_{T}-40$
Lend $\$ 2$	-2	$2 e^{T}$
Sell 3 calls \& buy 3 puts Strike 50	$3(6-8)=-6$	$3\left(50-S_{T}\right)$
Total	0	$2 e^{T T}$

b)

The payoff at the contract maturity date is

$$
\begin{aligned}
& \pi \times(1-y \%) \times \operatorname{Max}\left[S(T) / S(0),\left(1+g^{2} \%\right)^{T}\right] \\
& =\pi \times(1-y \%) \times \operatorname{Max}\left[S(1) / S(0),(1+g \%)^{1}\right] \quad \text { because } T=1 \\
& =[\pi / S(0)](1-y \%) \operatorname{Max}[S(1), S(0)(1+g \%)] \quad \text { because } g=3 \& S(0)=100 \\
& =(\pi / 100)(1-y \%) \operatorname{Max}[S(1), 103] \quad \\
& =(\pi / 100)(1-y \%)\{S(1)+\operatorname{Max}[0,103-S(1)]\} .
\end{aligned}
$$

Now, $\operatorname{Max}[0,103-S(1)]$ is the payoff of a one-year European put option, with strike price $\$ 103$, on the stock index; the time-0 price of this option is given to be is $\$ 15.21$. Dividends are incorporated in the stock index (i.e., $\delta=0$); therefore, $S(0)$ is the time- 0 price for a time-1 payoff of amount $S(1)$. Because of the no-arbitrage principle, the time0 price of the contract must be

$$
\begin{aligned}
& (\pi / 100)(1-y \%)\{S(0)+15.21\} \\
& =(\pi / 100)(1-y \%) \times 115.21 .
\end{aligned}
$$

Therefore, the "break-even" equation is

$$
\pi=(\pi / 100)(1-y \%) \times 115.21,
$$

or

$$
y \%=100 \times(1-1 / 1.1521) \%=13.202 \%
$$

Answer \#3:
a)

First, we construct the two-period binomial tree for the stock price.
$\begin{array}{lll}\text { Year } 0 & \text { Year } 1 & \text { Year 2 }\end{array}$

The calculations for the stock prices at various nodes are as follows:
$S_{u}=20 \times 1.2840=25.680$
$S_{d}=20 \times 0.8607=17.214$
$S_{u x}=25.68 \times 1.2840=32.9731$
$S_{u d}=S_{d u}=17.214 \times 1.2840=22.1028$
$S_{d d}=17.214 \times 0.8607=14.8161$
The risk-neutral probability for the stock price to go up is

$$
p^{*}=\frac{e^{\text {hh }}-d}{u-d}=\frac{e^{0.05}-0.8607}{1.2840-0.8607}=0.4502 .
$$

Thus, the risk-neutral probability for the stock price to go down is 0.5498 .
If the option is exercised at time 2 , the value of the call would be
$C_{u u}=(32.9731-22)_{+}=10.9731$
$C_{u d}=(22.1028-22)_{+}=0.1028$
$C_{d d}=(14.8161-22)_{+}=0$
If the option is European, then $C_{u}=e^{-0.05}\left[0.4502 C_{u u}+0.5498 C_{w d}\right]=4.7530$ and $C_{d}=e^{-0.05}\left[0.4502 C_{\mathrm{wd}}+0.5498 C_{d d}\right]=0.0440$.
But since the option is American, we should compare C_{u} and C_{d} with the value of the option if it is exercised at time 1 , which is 3.68 and 0 , respectively. Since $3.68<4.7530$ and $0<0.0440$, it is not optimal to exercise the option at time 1 whether the stock is in the up or down state. Thus the value of the option at time 1 is either 4.7530 or 0.0440 .

Finally, the value of the call is $C=e^{-0.05}[0.4502(4.7530)+0.5498(0.0440)]=2.0585$.
b)
$C(S, K, \sigma, r, T, \delta)=S e^{-\sigma \pi} N\left(d_{1}\right)-K e^{-r \tau} N\left(d_{2}\right)$
with
$d_{1}=\frac{\ln (S / K)+\left(r-\delta+\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}}$
$d_{2}=d_{1}-\sigma \sqrt{T}$
Because $S=20, K=25, \sigma=0.24, r=0.05, T=3 / 12=0.25$, and $\delta=0.03$, we have

$$
d_{1}=\frac{\ln (20 / 25)+\left(0.05-0.03+\frac{1}{2} 0.24^{2}\right) 0.25}{0.24 \sqrt{0.25}}=-1.75786
$$

and

$$
d_{2}=-1.75786-0.24 \sqrt{0.25}=-1.87786
$$

Using the Cumulative Normal Distribution Calculator, we obtain $N(-1.75786)=0.03939$ and $N(-1.87786)=0.03020$.

Hence, formula (12.1) becomes

$$
C=20 e^{-(0.03)(0.25)}(0.03939)-25 e^{-(0.05)(0.25)}(0.03020)=0.036292362
$$

Cost of the block of 100 options $=100 \times 0.0363=\$ 3.63$.

OBJECTIVE

1		5	$\mathrm{~A}+\mathrm{B}$
2		6	E
3		7	C
4		8	D

9	Gold
10	The average return on Gold is much less than on the stock market
11	14% and 167.25
12	The optimal amount to invest in gold would drop

13	B
14	A
15	B

