NPTEL

INDUSTRIAL AND MANAGEMENT ENGINEERING DEPARTMENT, IIT KANPUR QUANTITATIVE FINANCE ASSIGNMENT-1 (2015 JULY-AUG ONLINE COURSE)

1. (a) $U(W)=e^{a W}+b * W+c$ and we are required to find the properties of this utility function Now $U^{\prime}(W)=a e^{a W}+b$ and $U^{\prime \prime}(W)=a^{2} e^{a W}$.
As $U^{\prime}(W)>0$ and $U^{\prime \prime}(W)>0$, hence the utility function has the two fundamental property of (i) non-satiation and (ii) risk averseness. Now let us find absolute risk aversion and relative risk aversion properties of this particular utility function.
$A W=-\frac{U^{\prime \prime}(W)}{U^{\prime}(W)}=-\frac{a^{2} e^{a W}}{a e^{a W+b}}$ and $R W=-W \frac{U^{\prime \prime}(W)}{U^{\prime}(W)}=-W \frac{a^{2} e^{a W}}{a e^{a W+b}}$
Now from the two equations we easily see that:
i. $\quad A^{\prime}(W)<0$, which implies decreasing absolute risk aversion property, i.e., as the amount of wealth (W) increases the amount held in risky assets also increases.
ii. $\quad R^{\prime}(W)<0$, which implies decreasing relative risk aversion property, i.e., as the amount of wealth (W) increases the \% held in risky assets also increases.
2.

(a) We have $u^{\prime} w=\frac{1}{2} w^{-\frac{1}{2}}$, so $u^{\prime \prime} w=-\frac{1}{4} w^{-\frac{3}{2}}$. As we will see below, $u^{\prime \prime} w<$ 0 indicates that the individual is risk-averse.
(b) The expected amount of money he will lose is:

$$
.25 \text { Rs. } 0.8 k+.750=\text { Rs. } 0.2 k
$$

His expected wealth is:

$$
.25 \text { Rs. } 0.2 k+.75 \text { Rs. } 1 k=\text { Rs. } 0.8 k
$$

His expected utility is

$$
(.25) \cdot u(R s .0 .2 k)+(.75) \cdot u(R s .1 k)
$$

(c) His certainty equivalent wealth is the certain wealth $w_{C E}$ that gives him the same expected utility as the uncertain certain he starts out it, i.e., the certain wealth $w_{C E}$ that gives him an expected utility of 861.80. Solving $u\left(w_{C E}\right)$ for $w_{C E}$ gives us $w_{C E}$.
(d) The maximum amount he would pay for full insurance is his initial wealth minus his certainty equivalent wealth:
(e) The second derivative is now $u^{\prime \prime} w=-\frac{3}{4} w^{-\frac{3}{2}}$, which is of the same sign as before but three times larger in magnitude. His expected loss and expected wealth are unchanged at Rs. $0.2 k$ and $R s .0 .8 k$, respectively. His expected utility is now $(.25) \cdot u(R s .0 .2 k)+(.75) \cdot u(R s .1 k)$. Calculate rest others.
3. (a) Please go through Funds Separation theorem and solve the question using spreadsheet.
(b)

Given

$$
\begin{array}{ll}
\bar{\gamma}_{A}=0.15=15 \% & \sigma_{A}=0.05=5 \% \\
\bar{\gamma}_{B}=0.25=25 \% & \sigma_{D}=0.15=15 \%
\end{array}
$$

Let α be weight of γ_{A}

$$
\begin{aligned}
& \bar{R}_{p}=\alpha \bar{\gamma}_{A}+(1-\alpha) \bar{\gamma}_{B} \\
& \sigma_{p}^{2}=\alpha^{2}+\sigma_{A}^{2}+(1-\alpha)^{2} \sigma_{b}^{2}+2 \alpha_{A}(1-\alpha) \sigma_{A} \sigma_{B}{ }^{2}\left(-\sigma_{B} \cdot 5\right) \\
& R_{p}=15 \alpha+25-25 \alpha \\
& \alpha=\frac{25-R_{p}}{10} \\
& \sigma_{p}^{2}= \\
& =25 \alpha^{2}+(1-\alpha)^{2} \cdot 225+2 \cdot \alpha(1-\alpha)(-0.5)(5 \times 15) \\
& =25 \alpha^{2}+(1-\alpha)^{2} 925-75(\alpha)(1-\alpha)
\end{aligned}
$$

Substititiy value of α from R_{p}

$$
\begin{array}{r}
\sigma_{p}^{2}=25\left(\frac{25-R_{p}}{10}\right)^{2}+\left(1-\frac{25-R_{p}}{10}\right)^{2} \cdot 225-75\left(\frac{25-R_{p}}{10}\right) \\
\left(1-\frac{25-R_{p}}{10}\right)
\end{array}
$$

$$
\begin{aligned}
& \sigma_{p}^{2}=\left(\frac{25-R_{p}}{2+0}\right)^{2} 25+9225 \cdot\left(\frac{R_{p}-15}{2+0}\right)^{2}-\frac{3}{75} \cdot\left(\frac{R_{p}-15}{210}\right)\left(\frac{\left(25-R_{p}\right.}{100^{2}}\right) \\
& 4 \sigma_{p}^{2}= \frac{R_{p}^{2}+625-50 R_{p}+\frac{9 R_{p}^{2}}{}+2025-270 R_{p}}{}+3 R_{p}^{2}+1125-120 R_{p} \\
& 4 \sigma_{p}^{2}= 13 R_{p}^{2}=440 R_{p}+3775 . \\
& \frac{4}{13} \sigma^{2}= R_{p}^{2}-33.84 R_{p}+290.38 \\
&=\left(R_{p}-16.92\right)^{2}+3.994 . \\
&\left(R_{p}-16.92\right)^{2}= \frac{41}{13} \sigma^{2}-3.994 \\
&=
\end{aligned}
$$

So efficient frontier looks like a parabola. equation.

So MPV corresponds to $\left(R_{p}, \sigma^{2}\right) \equiv(16.92,12.98)$ $\sigma=3.6 \%$
for return at 20% we have $\sigma^{2}=43.81 \%$,

$$
\sigma=6.62 \%
$$

4 and 5
Solve using Spreadsheet
6. (a) (iii)
(b) False
(c) True
(d) If one of the w's is negative and your normalization scheme preserves signs, then surely after normalization one of them would exceed one.
(e) No, it would be treated as a risky asset

