

Unit 5 - Week 4:

outline	Week 4:Assignment
How to access Portal?	The due date for submitting this assignment has passed.As per our records you have not submitted thisDue on 2018-09-12, 23:59 IST.assignment.
Week 1:	1) Which of the following claim is true? 4 points
Week 2:	a) An open tree cannot have a closed branch.
Week 3:	b) If a truth tree is closed then every statement in the tree either has been decomposed or is a literal.
Week 4:	c) A completed tree must have all its branches closed.
Lecture 16: Introduction to	d) The number of branches in a truth tree must be greater than one.
Truth Trees	No, the answer is incorrect.
 Lecture 17: Truth Tree Rules and their Application 	Score: 0 Accepted Answers: b) If a truth tree is closed then every statement in the tree either has been decomposed or is a literal.
Lecture 18:	2) Which of the following claim is not true? 4 points
More on Truth-Tree	a) A truth tree with at least one completed open branch is an open tree.
Recovery of Partial Truth -	b) A closed tree cannot have an open branch.
Values	\bigcirc c) A finite set of statements is consistent iff the set has an open tree.
Lecture 19: Using the Truth	
Trees	d) The \lor D rule does not bifurcate into two branches.
Lecture 20: More on Truth	No, the answer is incorrect. Score: 0
Trees	Accepted Answers:
Quiz : Week 4:Assignment	 d) The ∨ D rule does not bifurcate into two branches. 3) Select the correct option from the given choices: The truth-tree of the following set shows: <i>4 points</i>
Feedback for Week 4	$[(A \bullet B), (A \lor (\sim B \bullet C))]$
Week 5	a) The set is consistent.
Weeko	© 2014 NPTEL - Privacy & Terms - Honor Code - EAOs -
project of	In association with

Funded by

NASSCOM®

Download	ce De	The truth tree for the following argument:	
Videos		~O • ~P	
Assignment Solution		$(Q \supset \sim O) \equiv \sim P$	
Interactive		\mathbf{R} / \therefore $\mathbf{Q} \bullet \mathbf{R}$	
Session with Students		a) Shows that the argument is valid	
		b) Shows that the argument is invalid.	
		No, the answer is incorrect. Score: 0	
		Accepted Answers: b) Shows that the argument is invalid.	
		5) The truth tree for the following argument: 4 point $((V \supset X) \bullet V) \supset \sim X$	s
		a) Shows that it is a tautology.	
		b) Shows that it is a contradiction.	
		c) Shows that it is a contingent.	
		No, the answer is incorrect. Score: 0	
		Accepted Answers: c) Shows that it is a contingent.	
		6) True or false? 1 point "Both the $\sim \supset D$ rule and $\sim \bullet D$ rule bifurcates into two branches."	nt
		a) True	
		b) False	
		No, the answer is incorrect. Score: 0	
		Accepted Answers: b) False	
		7) True or false? 1 poin "The decomposition rules can be applied to the main connectives and not the sub-connectives."	nt
		 a) True b) False 	
		No, the answer is incorrect. Score: 0	
		Accepted Answers: a) True	
		8) The recovery of partial truth values of the literals in a truth tree is possible from: 1 point	nt
		a) A closed tree	
		b) An open tree	
		C) A completed open branch	
		d) A closed branch	
		No, the answer is incorrect. Score: 0	

9) If done correctly, the truth $(Pullet\sim Q), R, (\sim Pee\sim)$	n tree from the following shows: $R)$	1 poi
a) A closed tree		
b) An open tree		
No, the answer is incorre Score: 0	ect.	
Accepted Answers: a) A closed tree		
10)True or false? "In case of truth tree, any two $p\equiv q$ is not a tautology."	given propositions such as p and q are logicall	1 poi y equivalent if and only
10) True or false? "In case of truth tree, any two $p \equiv q$ is not a tautology."	given propositions such as p and q are logicall	1 poi y equivalent if and only
10) True or false? "In case of truth tree, any two $p \equiv q$ is not a tautology." (a) True (b) False	given propositions such as p and q are logicall	1 poi y equivalent if and only
10)True or false? "In case of truth tree, any two $p \equiv q$ is not a tautology." a) True b) False No, the answer is incorrect	given propositions such as p and q are logically	1 poi y equivalent if and only