

- Perfect
reconstruction of signals

Nyquist and half band filters

- Special filter banks for perfect reconstruction

Quiz : Assignment
08
Assignment 8 Solutions

Week 9 - Wavelets -
I

Week 10 - Wavelets - II and Continuity of Functions

Week 11 - Fourier

Series - I

Week 12 - Fourier
Series - II and KL Transform

Interaction Session

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0\end{array}\right]$
$\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0\end{array}\right]$
$\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0\end{array}\right]$
3) Consider the following M-channel delay filter bank. Let $H_{i}(z)$ and $F_{i}(z)$ denote the analysis and the 2 poirim synthesis filter in the $(i+1)^{\text {th }}$ branch (where $i \in\{0,1, \ldots, M-1\}$) respectively.

$$
\begin{aligned}
& H(z)=3+z^{-8} \\
& \square \\
& H(z)=2+z^{2}+z^{-3} \\
& \square \\
& H(z)=2+z^{-1}+z^{3}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0

$$
\begin{aligned}
& \text { Accepted Answers: } \\
& H(z)=7+4 z^{-1}-z^{-5} \\
& H(z)=2+z^{-1}+z^{3}
\end{aligned}
$$

5) Which of the following filters are minimum phase filters?

$$
\begin{aligned}
& H_{1}(z)=\frac{3-z^{-1}}{2-5 z^{-1}+2 z^{-2}} \\
& H_{2}(z)=\frac{6-7 z^{-1}+2 z^{-2}}{3+2 z^{-1}} \\
& H_{3}(z)=\frac{1-2 z^{-1}}{5-z^{-1}} \\
& H_{4}(z)=\frac{3-7 z^{-1}+2 z^{-2}}{1-2 z^{-1}}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\begin{aligned}
& H_{2}(z)=\frac{6-7 z^{-1}+2 z^{-2}}{3+2 z^{-1}} \\
& H_{4}(z)=\frac{3-7 z^{-1}+2 z^{-2}}{1-2 z^{-1}}
\end{aligned}
$$

(True/False): As $P(z)=I$ ensures perfect reconstruction, for $E(z)=\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & 2 & 0 \\ -3 z^{-1} & 2 & 1\end{array}\right]$, one can
obtain stable synthesis filters using $R(z)=E(z)^{-1}$ which yield perfect reconstruction.

No, the answer is incorrect.
Score: 0
Accepted Answers:
False
7) For the filter bank in Question 3, what is $A_{l}(z)$?

$$
\begin{aligned}
& A_{l}(z)=0 \\
& A_{l}(z)=z^{-(M-1)} \delta_{l} \\
& A_{l}(z)=z^{-M} \\
& A_{l}(z)=\frac{z^{-(M-1)}}{M}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$A_{l}(z)=z^{-(M-1)} \delta_{l}$
8) (True/False) In Question 3, $x[n]$ can be reconstructed perfectly from the filter bank output $\hat{x}[n]$ by using delay elements.

No, the answer is incorrect.
Score: 0
Accepted Answers:
False
9) Consider the Haar wavelet decomposition and reconstruction upto second scale as non-uniform filter 2.5 poirxfer bank (i.e., decimation and upsampling rates are non-uniform across different channels). The analysis filters look like the following on simplification:

The analysis filters $H_{i}(z)$ for this filter bank are given as follows:
$H_{2}(z)=\frac{1+z^{-1}+z^{-2}+z^{-3}}{2}$
$H_{1}(z)=\frac{1+z^{-1}-z^{-2}-z^{-3}}{2}$
$H_{0}(z)=\frac{1-z^{-1}}{\sqrt{2}}$

Test which of the special properties given below are satisfied by the analysis filter bank.Strictly complementaryPower complementaryAll pass complementaryNone of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
None of the above
10)Consider a 3 channel filter bank with analysis filters
$H_{0}(z)=1, H_{1}(z)=6+z^{-1}+6 z^{-5}$ and $H_{2}(z)=2+z^{-1}+2 z^{-2}$ and synthesis filters $F_{0}(z)=-1-z^{-1}+2 z^{-2}+4 z^{-4}-5 z^{-5}, F_{1}(z)=-1+z^{-1}$ and $F_{2}(z)=1-z^{-4}$. Which of these following choices is $E(z), R(z)$ and do these form Nyquist M filters?
$E(z)=\left[\begin{array}{ccc}1 & 6 & 2 \\ 0 & 1 & 1 \\ 0 & 6 z^{-3} & 2\end{array}\right], R(z)=\left[\begin{array}{ccc}2-5 z^{-3} & -1+4 z^{-3} & -1 \\ 0 & 1 & -1 \\ 0 & -z^{-3} & 1\end{array}\right]$ and they are Nyquist M filte $E(z)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 6 & 1 & 6 z^{-1} \\ 2 & 1 & 2\end{array}\right], R(z)=\left[\begin{array}{ccc}2-5 z^{-1} & 0 & 0 \\ -1+4 z^{-1} & 1 & -z^{-1} \\ -1 & -1 & 1\end{array}\right]$ and they are not Nyquist M filt, $E(z)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 6 & 1 & 6 z^{-1} \\ 2 & 1 & 2\end{array}\right], R(z)=\left[\begin{array}{ccc}-1 & -1+4 z^{-1} & 2-5 z^{-1} \\ -1 & 1 & 0 \\ 1 & -z^{-1} & 0\end{array}\right]$ and they are not Nyquist M $E(z)=\left[\begin{array}{ccc}1 & 6 & 2 \\ 0 & 1 & 1 \\ 0 & 6 z^{-1} & 2\end{array}\right], R(z)=\left[\begin{array}{ccc}-1 & -1+4 z^{-1} & 2-5 z^{-1} \\ -1 & 1 & 0 \\ 1 & -z^{-1} & 0\end{array}\right]$ and they are Nyquist M filte

No, the answer is incorrect.
Score: 0
Accepted Answers:
$E(z)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 6 & 1 & 6 z^{-1} \\ 2 & 1 & 2\end{array}\right], R(z)=\left[\begin{array}{ccc}2-5 z^{-1} & 0 & 0 \\ -1+4 z^{-1} & 1 & -z^{-1} \\ -1 & -1 & 1\end{array}\right]$ and they are not Nyquist M filterPrevious Page
End

