

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

NASSCOI Funded by

In association with

Powered by

2

- II and Continuity

Week 11 - Fourier Series - I

Week 12 - Fourier Series - II and KL Transform

Interaction Session

of Functions

 Perfect reconstruction of signals 	No, the answer is incorrect. Score: 0 Accepted Answers:	
Nyquist and half band filters	$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$	
Special filter banks for perfect reconstruction	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}$	
Quiz : Assignment 08	$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Assignment 8 - Solutions		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Week 9 - Wavelets - I		22
Week 10 - Wavelets	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}$	202

3) Consider the following M-channel delay filter bank. Let $H_i(z)$ and $F_i(z)$ denote the analysis and the 2 points synthesis filter in the $(i+1)^{ ext{th}}$ branch (where $i\in\{0,1,\ldots,M-1\}$) respectively.

Which of the following are the expressions for $H_i(z)$ and $F_i(z)$?

$$H_i(z) = z^{-i} \text{ and } F_i(z) = z^{-i}$$

$$H_i(z) = z^{-(i-1)} \text{ and } F_i(z) = z^{-(i-1)}$$

$$H_i(z) = z^{-i} \text{ and } F_i(z) = z^{(i-M+1)}$$

$$H_i(z) = z^{-(i-1)} \text{ and } F_i(z) = z^{(i-M)}$$
No, the answer is incorrect.
Score: 0
Accepted Answers:

$$H_i(z) = z^{-i} \text{ and } F_i(z) = z^{(i-M+1)}$$

4) Which of the following are half band filters?

$$H(z)=7+4z^{-1}-z^{-5}$$

2 points

Mathematical Methods and Techniques in Signa...

 $\stackrel{\frown}{H(z)}=3+z^{-8}$ $H(z) = 2 + z^2 + z^{-3}$ $H(z) = 2 + z^{-1} + z^3$ No, the answer is incorrect. 2 Score: 0 Accepted Answers: $H(z) = 7 + 4z^{-1} - z^{-5}$ $H(z) = 2 + z^{-1} + z^3$ 2 5) Which of the following filters are minimum phase filters? 2 points $H_1(z) = rac{3-z^{-1}}{2-5z^{-1}+2z^{-2}}$ 2 $\overline{H_2(z)} = rac{6-7z^{-1}+2z^{-2}}{3+2z^{-1}}$ $H_3(z) = rac{1-2z^{-1}}{5-z^{-1}}$ $H_4(z)=rac{3-7z^{-1}+2z^{-2}}{1-2z^{-1}}$ No, the answer is incorrect. Score: 0 **Accepted Answers:** $H_2(z) = rac{6-7z^{-1}+2z^{-2}}{3+2z^{-1}} \ H_4(z) = rac{3-7z^{-1}+2z^{-2}}{1-2z^{-1}}$ (True/False): As P(z) = I ensures perfect reconstruction, for $E(z) = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ -3z^{-1} & 2 & 1 \end{bmatrix}$, one can 6) obtain stable synthesis filters using $R(z) = E(z)^{-1}$ which yield perfect reconstruction. True False No, the answer is incorrect. Score: 0 **Accepted Answers:** False 7) For the filter bank in Question 3, what is $A_l(z)$? 2 points \bigcirc $A_l(z) = 0$ \bigcirc $A_l(z)=z^{-(M-1)}\delta_l$ \bigcirc $A_l(z)=z^{-M}$ \bigcirc $A_l(z)=rac{z^{-(M-1)}}{M}$ No, the answer is incorrect. Score: 0 **Accepted Answers:** $A_l(z)=z^{-(M-1)}\delta_l$ 8) (True/False) In Question 3, x[n] can be reconstructed perfectly from the filter bank output $\hat{x}[n]$ by 2 points using delay elements.

Previous Page

End

R
ß
R