ourses » Mathemat	tical Methods and Techniques in Signal Processing	
	Announcemente Course Ask o Ouestion Dreamon 1	
Vook 5 S4	Announcements Course Ask a Question Progress F	-AQ
heorem a	nd Multirate Systems - I	Ę
Register for		2
Certification exam	Assignment 05	ç
Course outline	The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.	5 IST.
How to access	Instructions:	
the portal	1. Attempt all questions.	
Week 0 - Background and Prerequisites	 Submission deadline: 6th March 2019 23:55 IST Solutions to be posted: 7th March 2019 Older browsers might show unnecessary vertical bars at the end of math equations 	
Week 1 - Introduction to Signal Processing, State Space Representation and Vector Spaces - I	1) A baseband signal $s(t)$ with 150Hz bandwidth is sampled at a rate of F_s . The resultant signs upsampled by a factor 2 and then downsampled by a factor 16 to obtain the discrete samples \hat{s} . What is the largest lower bound on F_s in Hz to reconstruct back the signal $s(t)$ from the samples $\hat{s}[n]$?	gnal is $\mathfrak{F}\left[n ight]$.
Week 2 - Vector Spaces - II	No, the answer is incorrect. Score: 0 Accepted Answers:	
Week 3 - Vector	(Type: Numeric) 2400	
Spaces - III and Signal Geometry		1 poin
Week 4 -	2) (True/False) A signal is known to have frequency response such that $X(z) = X(-z)$. The signal can be reconstructed after decimation by factor 2.	1 poir
Probability and Random Processes	True	
Week 5 - Sampling	No, the answer is incorrect.	
T I I I I I I I I I I		

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQ In association with

NASSCOM

Mathematical Methods and Techniques in Signa...

systems	
Frequency	$\frac{1}{4}E_s$
representation of expanders	
and decimators	Cannot comment
Decimation and	No. the answer is incorrect.
interpolation	Score: 0
	Accepted Answers:
Quiz : Assignment 05	E_s
Assignment 5 - Solutions	4) Let $s[n]$ be any discrete-time signal with energy E_s . The signal is downsampled by 2. 1.5 points What is the energy of the resultant signal if there is no aliasing after decimation?
Week 6 -	
Multirate	E_s
Systems - II	
Week 7 -	$\frac{1}{2}E_s$
Multirate Systems - III	
	$rac{1}{4}E_s$
Week 8 - Multirate	
Systems - IV	Cannot comment
Week 0	No, the answer is incorrect.
Wavelets - I	Score: 0
	Accepted Answers:
Week 10 - Wavelets - II and	$\frac{1}{2}E_s$
Continuity of	5) A band limited signal $s(t)$ has the frequency response as follows and is sampled at a 1.5 points
Functions	rate F_s Hz. For what values of F_s is the reconstruction of original signal $s\left(t ight)$ possible?
Week 11 -	
Fourier Series - I	
Week 12 -	40 Hz
Fourier Series - II and KL	50 Hz
Transform	70 Hz
Interaction	150 Hz
Session	No, the answer is incorrect.
	Score: 0
	Accepted Answers:
	50 Hz 70 Hz
	150 Hz
	6) A signal $s[n]$ is downsampled by factor 3. Choose the correct statements. 2 points
	The original signal can be recovered if it is bandlimited to $rac{\pi}{3}$
	The original signal can be recovered always
	The original signal can be recovered if the signal $s[n]$ has non-zero entries only for $n=6k, k\in\mathbb{Z}$
	None of the above are correct.
	No, the answer is incorrect.
	Score: 0

Accepted Answers:	
The original signal can be recovered if it is bandlimited to $\frac{\pi}{3}$. The original signal can be recovered if the signal $s[n]$ has non-zero entries only for $n = 6k$.	$k\in\mathbb{Z}$
7) A signal $s(t)$ with bandwidth 100 Hz is amplitude modulated to 100 Hz carrier frequency. W the Nyquist sampling rate of the modulated signal in Hz?	hat is
(A signal $s(t)$ modulated to carrier frequency F_c is given by $s(t)\cos(2\pi F_c t)$)	
	22
No, the answer is incorrect. Score: 0	2
Accepted Answers: (Type: Numeric) 400	2
2	points
8) The frequency response of a downsampled signal is given as follows: 2	poin
Which among the following can be the frequency response of the original signal before downsam	pling?
Ŭ.	
No, the answer is incorrect.	
Accepted Answers:	
9) A student has system A and system B which are 2-fold decimator and 2-fold expander 2.5 , respectively. He has to observe and report the output of the overall system, where the input signal $x(n)$ is passed through system A followed by system B. By mistake, the student exchange systems A and B. For which of the following inputs, will he not obtain the desired output?	<i>points</i> es the
$x(n) = egin{cases} n & (n-k) ext{ mod } 4 = 0, \ ext{ for some constant } k \ 0 & ext{ else.} \end{cases}$	
$x(n)=\delta(n)$	
x(n) = u(n)	
$x(n) = egin{cases} n & n mod 3 = 0 \ 0 & ext{else.} \end{cases}$	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
$x(n) = egin{cases} n & (n-k) egin{array}{c} \mathrm{mod} \ 4 = 0, \ \mathrm{for \ some \ constant} \ k \ 0 & \mathrm{else.} \end{cases}$	
$egin{aligned} x(n) &= u(n) \ x(n) &= egin{cases} n & n ext{ mod } 3 = 0 \ 0 & ext{else.} \end{aligned}$	

*	
No, the answer is incorrect.	
Score: 0	
Accepted Answers:	
(Type: Numeric) 15	
	2.5 p
11Consider the following system with input $X(z)$ and output $Y(z)$.	3 p
, , , , , , , , , , , , , , , , , , , ,	•
at the input to the system by $\mathbf{Y}(z) = 1$. Which of the following statements are tr	102
Let the input to the system be $\mathbf{A}(z) = \frac{1}{1-z^{-1}}$. Which of the following statements are the	uer
_	
$y\left[n ight]=\delta\left[n ight]$	
The system is non-LTT	
- 1	
The overall impulse response of the system is $1-z^{-1}$	
The success is $1 - r^{-2}$	
The overall impulse response of the system is $1-z$	
No, the answer is incorrect.	
Score: 0	
Accepted Answers: $u[n] = \delta[n]$	
The system is non-LTI	
-2	

Previous Page

End