Courses » Mathematical Methods and Techniques in Signal Processing

Week 4 - Probability and Random Processes

Register for
Certification exam

Course outline

How to access the portal

Week 0 -
Background and Prerequisites

Week 1 -
Introduction to
Signal
Processing,
State Space Representation and Vector
Spaces - I

Week 2 - Vector Spaces - II

Week 3 - Vector
Spaces - III and
Signal Geometry

Week 4 -
Probability and
Random
Processes

- Basics of probability and
random
variables
- Mean and variance of a

Assignment 4

The due date for submitting this assignment has passed.
As per our records you have not submitted this Due on 2019-02-27, 23:59 IST. assignment.

Instructions:

1. Attempt all questions.
2. Submission deadline: 27th February 2019 23:59 IST
3. Solutions to be posted: 28th February 2019
4. Older browsers might show unnecessary vertical bars at the end of math equations
1) Let $X(t)$ and $Y(t)$ be two random processes,

1 point then $\left|R_{X X}(\tau)\right|+\left|R_{Y Y}(\tau)\right| \leq\left(\sqrt{R_{X X}(0)}+\sqrt{R_{Y Y}(0)}\right)^{2}-2\left|R_{X Y}(\tau)\right|$.

No, the answer is incorrect.
Score: 0
Accepted Answers:
True
2) Three people randomly choose a 4-digit ATM pin using the numbers

1 point
$1,2,3,4,5,6,7,8,9,0, A, B, C, D, E, F$. What is the probability that all three choose the same ATM pin?

© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -

National Programme on Technology Enhanced Learning

```
        random
        processes
- Stationarity of
    random
    processes
- Problem on
    mean and
    variance
- Problem on
    MAP Detection
    Quiz :
    Assignment 4
* Assignment 4-
    Solutions
```


Week 5 -

```
Sampling
Theorem and
Multirate
Systems - I
3) Consider the data given in the previous question. What is the probability that all 3 people 1.5 points ce De choose different pins?
```

```
\frac{1}{16}
```

\frac{1}{16}
\frac{1}{16}
\frac{1}{16}
(1\mp@subsup{6}{}{4}-2)(1\mp@subsup{6}{}{4}-1)
(1\mp@subsup{6}{}{4}-2)(1\mp@subsup{6}{}{4}-1)
(1\mp@subsup{6}{}{4}-3)(1\mp@subsup{6}{}{4}-2)(1\mp@subsup{6}{}{4}-1)
(1\mp@subsup{6}{}{4}-3)(1\mp@subsup{6}{}{4}-2)(1\mp@subsup{6}{}{4}-1)
No, the answer is incorrect.
Score: 0
Accepted Answers:
$\frac{\left(16^{4}-2\right)\left(16^{4}-1\right)}{16^{8}}$

```

\section*{Week 6 -}

Multirate
Systems - II

Week 7 -
Multirate
Systems - III

\section*{Week 8 -}

Multirate
Systems - IV

\section*{Week 9 -}

Wavelets - I

\section*{Week 10 -}

Wavelets - II and
Continuity of
Functions
4) Consider the power spectral density function \(S_{x x}(\omega)=\frac{26+4 \omega^{2}}{\omega^{4}+13 \omega^{2}+36}\). The corresponding autocorrelation function is
\[
\begin{aligned}
& \frac{1}{9} e^{-3|\tau|}+\frac{1}{4} e^{-2|\tau|} \\
& \frac{1}{2} e^{-2|\tau|}+\frac{1}{3} e^{-3|\tau|} \\
& 2 e^{-2|\tau|}+2 e^{-3|\tau|} \\
& \frac{1}{4} e^{2|\tau|}+\frac{1}{9} e^{3|\tau|}
\end{aligned}
\]

No, the answer is incorrect.
Score: 0
Accepted Answers:
\(\frac{1}{2} e^{-2|\tau|}+\frac{1}{3} e^{-3|\tau|}\)

\section*{Week 11 -}

Fourier Series - I

\section*{Week 12 -}

Fourier Series -
II and KL
Transform

Interaction
Session
5) Which of the following can be CDF of a random variable?

2 points
\[
F_{X}(x)=\left\{\begin{array}{cc}
0 & \text { for }-\infty<x<-1 \\
0.5 & \text { for }-1 \leq x<0 \\
0.75 & \text { for } 0 \leq x<2 \\
1 & \text { for } 2 \leq x<\infty
\end{array}\right.
\]
\[
F_{X}(x)=\left\{\begin{array}{cc}
0 & \text { for }-\infty<x<-1 \\
0.5 & \text { for }-1 \leq x<0 \\
0.75 & \text { for } 0 \leq x<2 \\
x & \text { for } 2 \leq x<\infty
\end{array}\right.
\]
\[
F_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{2|x|+4} & \text { for }-\infty<x \leq-1 \\
0.5 & \text { for }-1 \leq x<0 \\
0.75 & \text { for } 0 \leq x<2 \\
1 & \text { for } 2 \leq x<\infty
\end{array}\right.
\]
\[
F_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{|x|+2} & \text { for }-\infty<x<0 \\
1-(0.5) \mathrm{e}^{-x} & \text { for } 0 \leq x \leq \infty
\end{array}\right.
\]

No, the answer is incorrect.
Score: 0
Accepted Answers:
\[
\begin{aligned}
& F_{X}(x)=\left\{\begin{array}{cc}
0 & \text { for }-\infty<x<-1 \\
0.5 & \text { for }-1 \leq x<0 \\
0.75 & \text { for } 0 \leq x<2 \\
1 & \text { for } 2 \leq x<\infty
\end{array}\right. \\
& F_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{|x|+2} & \text { for }-\infty<x<0 \\
1-(0.5) \mathrm{e}^{-x} & \text { for } 0 \leq x \leq \infty
\end{array}\right.
\end{aligned}
\]
6) Consider \(X(t)=A \cos (\omega t+\phi)\) where \(\phi \sim \mathrm{U}[-\pi, \pi], A\) is a random variable 2 points and \(A\) and \(\phi\) are statistically independent. Consider a system with impulse response \(H(t)\) that satisfies \(Y(t)=H(t) * X(t)\), where \(*\) represents linear convolution. Which of the following properties does \(Y(t)\) possess:

Autocorrelation \(R_{Y Y}\left(t_{1}, t_{2}\right)\) does not change by shifts in time.

Mean \(\mathrm{E}[Y(t)]\) is time varying.
\(Y(t)\) is a WSS random process.

None of the above.
No, the answer is incorrect.
Score: 0
Accepted Answers:
Autocorrelation \(R_{Y Y}\left(t_{1}, t_{2}\right)\) does not change by shifts in time. \(Y(t)\) is a WSS random process.
7) Consider random processes \(X[n]\) and \(Y[n]\) which are uniformly distributed over the 2.5 points shaded rectangle in the figure below.

Which of the following statements are true about the random processes?The two random processes are uncorrelated but not independent.The two random processes are independent, uncorrelated and orthogonal.The two random processes are independent but non orthogonal.The two random processes are correlated.

No, the answer is incorrect.
Score: 0
Accepted Answers:
The two random processes are independent, uncorrelated and orthogonal.
8) Let \(f(t)\) be a zero mean white random process with \(\sigma_{f}^{2}=1\). Let \(y(t)=3 f(t)-4 f(t-2)\).

What is the value of \(a+b+c\) when the autocorrelation matrix is \(R_{Y Y}=\left[\begin{array}{lll}a & b & c \\ b & a & b \\ c & b & a\end{array}\right]\).

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) 13

\section*{2.5 points}
9) Consider a fair die with 8 faces. What is the expected number of times you need to roll the die to so that all possible numbers appear at least once? Give your answer to 2 decimal places.

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Range) 21.72,21.76
10) \(X\) and \(Y\) are random variables on a probability space with joint probability mass function 3 pointo given by,

Let the random variable \(Z\) be defined as \(Z=X+Y\). Find the variances of each of the random variables \(X, Y\) and \(Z\) ?
\[
\begin{aligned}
& \operatorname{Var}(X)=3.23, \operatorname{Var}(Y)=2.2, \operatorname{Var}(Z)=8.87 \\
& \operatorname{Var}(X)=1.1275, \operatorname{Var}(Y)=0.76, \operatorname{Var}(Z)=1.8475 \\
& \operatorname{Var}(X)=1.45, \operatorname{Var}(Y)=1.2, \operatorname{Var}(Z)=2.65
\end{aligned}
\]

None of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
\(\operatorname{Var}(X)=1.1275, \operatorname{Var}(Y)=0.76, \operatorname{Var}(Z)=1.8475\)

\section*{Previous Page}```

