PICEL	reviewer4@np	tel.litm.ac.i	
ourses » Mathemati	cal Methods and Techniques in Signal Processing		
	Announcements Course Ask a Question Progress	FAQ	
		.	
Veek 3 - Ve		_	
Spaces - III	and Signal Geometry	2	
Register for		2	
Certification exam	Assignment 03		
	Assignment of	2	
Course outline	The due date for submitting this assignment has passed.As per our records you have not submitted thisDue on 2019-02-20, 23	:59 IST.	
	assignment.		
How to access the portal	Instructions:		
	1. Attempt all questions.		
Week 0 -	2. Submission deadline: 20th February 2019 23:55 IST		
Background and Prerequisites	 Solutions to be posted: 21st February 2019 Older browsers might show unnecessary vertical bars at the end of math equations 		
Wook 1	1) (True/False) If f and g are orthonormal vectors in \mathbb{R}^n , then the	1 poin	
Week 1 - Introduction to	vectors $u = f + g$ and $v = f - g$ are also orthonormal vectors in \mathbb{R}^n .		
Signal			
Processing, State Space	True		
Representation	False		
and Vector	No, the answer is incorrect.		
Spaces - I	Score: 0		
Week 2 - Vector	Accepted Answers:		
Spaces - II	False		
Week 3 - Vector	2) (True/False) Consider a space S spanned by M orthogonal signals. Consider another	1 poin	
Spaces - III and	space S^\prime which is spanned by the negatives of the M orthogonal signals. Then, dimension of the		
Signal Geometry	signal space spanned by $S\cup S'$ remains unchanged.		
Linear	True		
independence of orthogonal			
vectors	False		
O Hilbert space	No, the answer is incorrect.		
and linear	Score: 0		
transformation	Accepted Answers:		
	True		
Gram Schmidt orthonormalization			

Mathematical Methods and Techniques in Signa...

complement	4) $\begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} -2 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$ 1.5 points
Problem on signal geometry	Ce De 4) 2 5 -1 , $u_2 = \begin{vmatrix} -2 \\ 1 \\ 1 \end{vmatrix}$ and $y = \begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix}$. Let $\{u_1, u_2\}$ be a basis
(4-QAM)	for $W = \text{Span}\{u_1, u_2\}$. Write y as the sum of a vector in W and a vector orthogonal to W .
Quiz : Assignment 03	
 Assignment 3 - Solutions 	$y = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix} + \begin{bmatrix} -1 \\ -3 \\ 4 \end{bmatrix}$
Week 4 - Probability and	
Random Processes	$y = egin{bmatrix} -2/5 \\ 2 \\ 1/5 \end{bmatrix} + egin{bmatrix} 7/5 \\ 0 \\ 14/5 \end{bmatrix}$
Week 5 -	$\begin{bmatrix} 3 & \\ 1/5 \end{bmatrix} \begin{bmatrix} 1/5 \\ 14/5 \end{bmatrix}$
Sampling Theorem and	
Multirate Systems - I	$y = \begin{bmatrix} -2/5 \\ 0 \\ 14/5 \end{bmatrix} + \begin{bmatrix} 7/5 \\ 2 \\ 1/5 \end{bmatrix}$
Week 6 - Multirate	
Systems - II	$\begin{bmatrix} -2/3 \end{bmatrix} \begin{bmatrix} 5/3 \end{bmatrix}$
Week 7 -	$y = egin{bmatrix} -2/3 \ 2/3 \ 14/3 \ -5/3 \ -5/3 \ -5/3 \ \end{pmatrix}$
Multirate Systems - III	
Week 8 -	No, the answer is incorrect. Score: 0
Multirate Systems - IV	Accepted Answers: $\begin{bmatrix} -2/5 \end{bmatrix} \begin{bmatrix} 7/5 \end{bmatrix}$
Week 9 -	$y = egin{bmatrix} -2/5 \ 2 \ 1/5 \end{bmatrix} + egin{bmatrix} 7/5 \ 0 \ 14/5 \end{bmatrix}$
Wavelets - I	$\begin{bmatrix} 1/5 \end{bmatrix} \begin{bmatrix} 14/5 \end{bmatrix}$
Week 10 - Wavelets - II and	5) Suppose $\{\phi_i\}_{i=1}^n$ be a set of orthonormal basis for a vector space V . Then for any two 1.5 points vectors x and y belonging to V ,
Continuity of Functions	
Week 11 -	$\langle x,y angle = \sum\limits_{i=1}^n \langle x+y,\phi_i angle$
Fourier Series - I	i=1
Week 12 - Fourier Series -	$\langle x,y angle = \sum\limits_{i=1}^n \langle x,\phi_i angle \overline{\langle y,\phi_i angle}$
II and KL Transform	i=1
	$\langle x,y angle = \langle x,\phi_i angle \overline{\langle y,\phi_i angle}$
Interaction Session	
	$\langle x,y angle = \sum\limits_{i=1}^n \sum\limits_{j=1}^n \langle x,\phi_i angle \langle y,\phi_j angle$
	No, the answer is incorrect.
	Score: 0 Accepted Answers:
	$\langle x,y angle = \sum\limits_{i=1}^n \langle x,\phi_i angle \overline{\langle y,\phi_i angle}$
	<i>i</i> -1
	⁶⁾ Given the following set of functions $\{1, e^{jt}, e^{\frac{\pi}{4}}\}$ defined over $[-\pi, \pi]$. Which of the following statements are true:

 \bigcirc

1 and
$$e^{\frac{\pi}{4}}$$
 are orthogonal.
1 and $e^{\frac{\pi}{4}}$ are orthogonal.
 e^{it} and $e^{\frac{\pi}{4}}$ are orthogonal.
All of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
1 and $e^{-\pi}$ are orthogonal.
7) Consider the following linearly independent vectors
 $\mathbf{1} = \begin{pmatrix} 3\\ -1\\ -7 \end{pmatrix}, u_3 = \begin{pmatrix} 3\\ -1\\ -7 \end{pmatrix}$. Which of the following represents an
ordered orthonormal basis for \mathbb{R}^3
 $\mathbf{q}_1 = \begin{pmatrix} \frac{1}{\sqrt{6}}\\ \frac{1}{\sqrt{$

$$\mathbf{q_1} = \begin{pmatrix} \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \end{pmatrix}, \ \mathbf{q_2} = \begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \end{pmatrix}, \ \mathbf{q_3} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$$

8) (True/False). Let $X = l_2[-\pi, \pi]$. Let $S_1 = \operatorname{span}(\{1, \cos(t), \cos(2t), \dots\})$ and $S_2 = \operatorname{span}(\{\sin(t), \sin(2t), \dots\})$. Then, the dimension of the sum of spaces $\dim(S_1 + S_2) = \dim(S_1) + \dim(S_2)$.

True

Mathematical Methods and Techniques in Signa...

False

No, the answer is incorrect. Score: 0 Accepted Answers: *True*

9) (True/False) For a matrix $A \in \mathbb{R}^{m \times n}$, we denote the null space of A^{T} as $\mathcal{N}_{A^{\mathrm{T}}}$ and **2 points** null space of AA^{T} as $\mathcal{N}_{AA^{\mathrm{T}}}$. Then $\mathcal{N}_{A^{\mathrm{T}}} = \mathcal{N}_{AA^{\mathrm{T}}}$.

True False	
No, the answer is incorrect.	

Score: 0 Accepted Answers:

True

10)Consider a set of linearly independent

3 points

3 points

functions $\{p_1(x) = 1, p_2(x) = x, p_3(x) = x^2\}$ defined over [-1, 1]. An orthonormal basis for these functions is given by

$$\mathbf{q_1} = \frac{1}{\sqrt{2}}, \ \mathbf{q_2} = \sqrt{\frac{2}{3}}x, \ \mathbf{q_3} = \sqrt{\frac{8}{45}} \left(x^2 - \frac{1}{3}\right)$$
$$\mathbf{q_1} = 1, \ \mathbf{q_2} = \sqrt{\frac{3}{2}}x, \ \mathbf{q_3} = \sqrt{\frac{45}{8}} \left(x^2 - \frac{1}{3}\right)$$
$$\mathbf{q_1} = \frac{1}{\sqrt{2}}, \ \mathbf{q_2} = \sqrt{\frac{3}{2}}x, \ \mathbf{q_3} = \sqrt{\frac{45}{8}} \left(x^2 - \frac{1}{3}\right)$$
$$\mathbf{q_1} = \frac{1}{\sqrt{2}}, \ \mathbf{q_2} = \sqrt{\frac{3}{2}}x, \ \mathbf{q_3} = \sqrt{45} \left(x^2 - \frac{1}{3}\right)$$

No, the answer is incorrect. Score: 0

Accepted Answers:

$$\mathbf{q_1} = rac{1}{\sqrt{2}}, \ \mathbf{q_2} = \sqrt{rac{3}{2}}x, \ \mathbf{q_3} = \sqrt{rac{45}{8}}\left(x^2 - rac{1}{3}
ight)$$

11)Consider the following signals:

 $f_1(t) = \begin{cases} 0.5 & \text{for } 0 \le t \le 2 \\ -0.5 & \text{for } 2 \le t \le 4 \end{cases}$ $f_2(t) = \begin{cases} 0.5 & \text{for } 0 \le t \le 4 \\ 0 & \text{for } t \ge 4 \end{cases}$ $f_3(t) = \begin{cases} 0.5 & \text{for } 0 \le t \le 1 \text{ and } 2 \le t \le 3 \\ -0.5 & \text{for } 1 \le t \le 2 \text{ and } 3 \le t \le 4 \end{cases}$

Consider a signal x(t) defined as below

$$x(t) = egin{cases} 2 & ext{for } 0 \leq t \leq 1 \ 3 & ext{for } 1 \leq t \leq 2 \ -1 & ext{for } 2 \leq t \leq 3 \ 0 & ext{elsewhere} \end{cases}$$

 $x(t)\,$ can be approximated by the signals $f_i(t)$ for i=1,2,3 as

Mathematical Methods and Techniques in Signa...

•	
$x(t) = 3f_1(t) + 2f_2(t) - f_3(t)$	
$x(t) = f_1(t) + 3f_2(t) - 2f_3(t)$	
$x(t)=2f_1(t)+2f_2(t)-4f_3(t)$	
Not possible to represent $x(t)$ with given $f_i(t)$ for $i=1,2,3.$	
No, the answer is incorrect.	
Score: 0	
Accepted Answers: $x(t)=3f_1(t)+2f_2(t)-f_3(t)$	202
$-(-) - j_1(-) + -j_2(-) - j_3(-)$	
	lord.
Previous Page	End