Week 3 - Vector

Spaces - III and Signal Geometry

complement

- Problem on signal geometry (4-QAM)

Quiz : Assignment 03

Assignment 3 Solutions

Week 4 -

Probability and
Random
Processes

Week 5

Sampling
Theorem and
Multirate
Systems - I

Week 6 -

Multirate
Systems - II

Week 7 -
Multirate
Systems - III

Week 8 -
Multirate
Systems - IV

Week 9 -
Wavelets - I

Week 10 -
Wavelets - II and
Continuity of
Functions

Week 11 -
Fourier Series - I

Week 12 -
Fourier Series
II and KL
Transform

Interaction

Session
ce De
4) Let $u_{1}=\left[\begin{array}{c}2 \\ 5 \\ -1\end{array}\right], \quad u_{2}=\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right]$ and $y=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Let $\left\{u_{1}, u_{2}\right\}$ be a basis
1.5 points for $W=\operatorname{Span}\left\{u_{1}, u_{2}\right\}$. Write y as the sum of a vector in W and a vector orthogonal to W.

$$
y=\left[\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
-3 \\
4
\end{array}\right]
$$

$$
y=\left[\begin{array}{c}
-2 / 5 \\
2 \\
1 / 5
\end{array}\right]+\left[\begin{array}{c}
7 / 5 \\
0 \\
14 / 5
\end{array}\right]
$$

$$
y=\left[\begin{array}{c}
-2 / 5 \\
0 \\
14 / 5
\end{array}\right]+\left[\begin{array}{c}
7 / 5 \\
2 \\
1 / 5
\end{array}\right]
$$

$$
y=\left[\begin{array}{c}
-2 / 3 \\
2 / 3 \\
14 / 3
\end{array}\right]+\left[\begin{array}{c}
5 / 3 \\
4 / 3 \\
-5 / 3
\end{array}\right]
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
y=\left[\begin{array}{c}
-2 / 5 \\
2 \\
1 / 5
\end{array}\right]+\left[\begin{array}{c}
7 / 5 \\
0 \\
14 / 5
\end{array}\right]
$$

5) Suppose $\left\{\phi_{i}\right\}_{i=1}^{n}$ be a set of orthonormal basis for a vector space V. Then for any two 1.5 points vectors x and y belonging to V,

$$
\langle x, y\rangle=\sum_{i=1}^{n}\left\langle x+y, \phi_{i}\right\rangle
$$

$$
\langle x, y\rangle=\sum_{i=1}^{n}\left\langle x, \phi_{i}\right\rangle \overline{\left\langle y, \phi_{i}\right\rangle}
$$

$$
\langle x, y\rangle=\left\langle x, \phi_{i}\right\rangle \overline{\left\langle y, \phi_{i}\right\rangle}
$$

$$
\langle x, y\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n}\left\langle x, \phi_{i}\right\rangle\left\langle y, \phi_{j}\right\rangle
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\langle x, y\rangle=\sum_{i=1}^{n}\left\langle x, \phi_{i}\right\rangle \overline{\left\langle y, \phi_{i}\right\rangle}
$$

${ }^{6)}$ Given the following set of functions $\left\{1, e^{j t}, e^{\frac{j t}{4}}\right\}$ defined over $[-\pi, \pi]$. Which of the
2 points following statements are true

1 and $e^{\frac{j t}{4}}$ are orthogonal.

1 and $e^{j t}$ are orthogonal.
$e^{j t}$ and $e^{\frac{j t}{4}}$ are orthogonal.

All of the above
No, the answer is incorrect.
Score: 0

Accepted Answers:

1 and $e^{j t}$ are orthogonal.
7) Consider the following linearly independent vectors
in $\mathbb{R}^{3}: u_{1}=\left(\begin{array}{l}3 \\ 3 \\ 6\end{array}\right), \quad u_{2}=\left(\begin{array}{c}1 \\ 1 \\ -7\end{array}\right), \quad u_{3}=\left(\begin{array}{c}3 \\ -1 \\ 8\end{array}\right)$. Which of the following represents an
ordered orthonormal basis for \mathbb{R}^{3}

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{1}}=\left(\begin{array}{c}
\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} \\
\frac{2}{\sqrt{6}}
\end{array}\right), \mathbf{q}_{\mathbf{2}}=\left(\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}}
\end{array}\right), \mathbf{q}_{\mathbf{3}}=\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
-\frac{1}{\sqrt{2}}
\end{array}\right) \\
& \mathbf{q}_{\mathbf{1}}=\left(\begin{array}{c}
\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}}
\end{array}\right), \mathbf{q}_{\mathbf{2}}=\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
-\frac{1}{\sqrt{2}}
\end{array}\right), \mathbf{q}_{\mathbf{3}}=\left(\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}}
\end{array}\right) \\
& \mathbf{q}_{\mathbf{1}}=\left(\begin{array}{c}
\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} \\
\frac{2}{\sqrt{6}}
\end{array}\right), \mathbf{q}_{\mathbf{2}}=\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} \\
0
\end{array}\right), \mathbf{q}_{\mathbf{3}}=\left(\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{2}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}}
\end{array}\right) \\
& \mathbf{q}_{\mathbf{1}}=\left(\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{6}} \\
\frac{2}{\sqrt{6}}
\end{array}\right), \mathbf{q}_{\mathbf{2}}=\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}}
\end{array}\right), \mathbf{q}_{\mathbf{3}}=\binom{-\frac{1}{\sqrt{2}}}{0}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\mathbf{q}_{\mathbf{1}}=\left(\begin{array}{c}\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}}\end{array}\right), \mathbf{q}_{\mathbf{2}}=\left(\begin{array}{c}\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}}\end{array}\right), \mathbf{q}_{\mathbf{3}}=\left(\begin{array}{c}\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0\end{array}\right)$
8) (True/False). Let $X=l_{2}[-\pi, \pi]$.

Let $S_{1}=\operatorname{span}(\{1, \cos (t), \cos (2 t), \ldots\})$ and $S_{2}=\operatorname{span}(\{\sin (t), \sin (2 t), \ldots\})$. Then, the dimension of the sum of spaces $\operatorname{dim}\left(S_{1}+S_{2}\right)=\operatorname{dim}\left(S_{1}\right)+\operatorname{dim}\left(S_{2}\right)$.True

No, the answer is incorrect.
Score: 0
Accepted Answers:
True
9) (True/False) For a matrix $A \in \mathbb{R}^{m \times n}$, we denote the null space of A^{T} as $\mathcal{N}_{A^{\mathrm{T}}}$ and 2 points null space of $A A^{\mathrm{T}}$ as $\mathcal{N}_{A A^{\mathrm{T}}}$. Then $\mathcal{N}_{A^{\mathrm{T}}}=\mathcal{N}_{A A^{\mathrm{T}}}$.

No, the answer is incorrect.
Score: 0
Accepted Answers:
True
10Consider a set of linearly independent
functions $\left\{p_{1}(x)=1, p_{2}(x)=x, p_{3}(x)=x^{2}\right\}$ defined over $[-1,1]$. An orthonormal basis for these functions is given by

$$
\begin{aligned}
& \mathbf{q}_{1}=\frac{1}{\sqrt{2}}, \mathbf{q}_{2}=\sqrt{\frac{2}{3}} x, \mathbf{q}_{3}=\sqrt{\frac{8}{45}}\left(x^{2}-\frac{1}{3}\right) \\
& \mathbf{q}_{\mathbf{1}}=1, \mathbf{q}_{2}=\sqrt{\frac{3}{2}} x, \mathbf{q}_{3}=\sqrt{\frac{45}{8}}\left(x^{2}-\frac{1}{3}\right) \\
& \mathbf{q}_{\mathbf{1}}=\frac{1}{\sqrt{2}}, \mathbf{q}_{2}=\sqrt{\frac{3}{2}} x, \mathbf{q}_{3}=\sqrt{\frac{45}{8}}\left(x^{2}-\frac{1}{3}\right) \\
& \mathbf{q}_{\mathbf{1}}=\frac{1}{\sqrt{2}}, \mathbf{q}_{2}=\sqrt{\frac{3}{2}} x, \mathbf{q}_{3}=\sqrt{45}\left(x^{2}-\frac{1}{3}\right)
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\mathbf{q}_{1}=\frac{1}{\sqrt{2}}, \mathbf{q}_{2}=\sqrt{\frac{3}{2}} x, \mathbf{q}_{\mathbf{3}}=\sqrt{\frac{45}{8}}\left(x^{2}-\frac{1}{3}\right)
$$

11)Consider the following signals:
$f_{1}(t)= \begin{cases}0.5 & \text { for } 0 \leq t \leq 2 \\ -0.5 & \text { for } 2 \leq t \leq 4\end{cases}$
$f_{2}(t)= \begin{cases}0.5 & \text { for } 0 \leq t \leq 4 \\ 0 & \text { for } t \geq 4\end{cases}$
$f_{3}(t)= \begin{cases}0.5 & \text { for } 0 \leq t \leq 1 \text { and } 2 \leq t \leq 3 \\ -0.5 & \text { for } 1 \leq t \leq 2 \text { and } 3 \leq t \leq 4\end{cases}$

Consider a signal $x(t)$ defined as below
$x(t)= \begin{cases}2 & \text { for } 0 \leq t \leq 1 \\ 3 & \text { for } 1 \leq t \leq 2 \\ -1 & \text { for } 2 \leq t \leq 3 \\ 0 & \text { elsewhere }\end{cases}$
$x(t)$ can be approximated by the signals $f_{i}(t)$ for $i=1,2,3$ as

$$
x(t)=f_{1}(t)+2 f_{2}(t)-3 f_{3}(t)
$$

$$
\begin{aligned}
& x(t)=3 f_{1}(t)+2 f_{2}(t)-f_{3}(t) \\
& x(t)=f_{1}(t)+3 f_{2}(t)-2 f_{3}(t) \\
& x(t)=2 f_{1}(t)+2 f_{2}(t)-4 f_{3}(t)
\end{aligned}
$$

Not possible to represent $x(t)$ with given $f_{i}(t)$ for $i=1,2,3$.
No, the answer is incorrect.
Score: 0
Accepted Answers:
$x(t)=3 f_{1}(t)+2 f_{2}(t)-f_{3}(t)$

