## Courses » Mathematical Methods and Techniques in Signal Processing

## Week 2 - Vector Spaces - II

## Register for Certification exam

## Course outline

How to access the portal

Week 0 -
Background and Prerequisites

Week 1 -
Introduction to
Signal
Processing,
State Space
Representation
and Vector
Spaces - I

Week 2 - Vector
Spaces - II

- Linear independence and spanning set
- Unique representation theorem
- Basis and cardinality of basis
- Norms and inner product spaces


## Assignment 02

The due date for submitting this assignment has passed.
As per our records you have not submitted this
Due on 2019-02-13, 23:59 IST. assignment.

Instructions:

1. Attempt all questions.
2. Submission deadline: 13th February 2019 23:55 IST
3. Solutions to be posted: 14th February 2019
4. Older browsers might show unnecessary vertical bars at the end of math equations
1) 

$$
\begin{gathered}
\text { Consider the vectors } u=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \text { and } v=\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right] \text { in } \mathbb{R}^{3} \text {. Let us consider the inner product, } \\
\langle u, v\rangle=u_{1} v_{1}+b\left(u_{2} v_{2}\right)+u_{3} v_{3}
\end{gathered}
$$

where $b \in \mathbb{R}$. $u_{i}$ and $v_{i}$ represent the $i^{\text {th }}$ element of $u$ and $v$ respectively.
For what value of $b$ are the vectors $u$ and $v$ orthogonal?


No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) 2
1 point
2) Let $\mathcal{S}=\{a, b, c, d\}$ be a subset of $\mathbb{R}^{5}$ where 1.5 points
$a=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ \Omega\end{array}\right], b=\left[\begin{array}{l}0 \\ 1 \\ 3 \\ 1\end{array}\right], c=\left[\begin{array}{l}1 \\ 1 \\ 4 \\ 1\end{array}\right], d=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ n\end{array}\right]$
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -

National Programme on Technology Enhanced Learning

In association with

Funded by


No, the answer is incorrect.
Score: 0
Accepted Answers:
$\left|\cos \theta_{1}\right|=\left|\cos \theta_{2}\right|$
$\left|\cos \theta_{1}\right|^{2}+\left|\sin \theta_{2}\right|^{2}=1$
6) If $u$ and $v$ are orthogonal vectors in the inner product space $\mathcal{V}$, such
that $\|u\|=6$ and $\|u+v\|=10$, then what is the value of $\|v\|$ and $\|u-v\|$ ?

4, 2

8,10

6,12
$8, \sqrt{28}$
No, the answer is incorrect.
Score: 0
Accepted Answers:
8,10
7) Find the dimension of the plane $2 x-3 y=0$ in $\mathbb{R}^{3}$.

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) 2
8) Let $A$ and $B$ be subspaces of the vector space of $2 \times 2$ matrices defined over integers. Then, subspace $C$ is said to be the direct sum
of $A$ and $B$ if $C=A+B$ and $A \cap B=\left\{\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\right\}$. The basis of the subspaces are given by $\mathcal{B}_{A}=\left\{\left[\begin{array}{cc}m-12 & 9 \\ 0 & m\end{array}\right],\left[\begin{array}{cc}0 & m \\ 1 & 2\end{array}\right]\right\}$ and $\mathcal{B}_{B}=\left\{\left[\begin{array}{cc}m & 0 \\ 1 & 1\end{array}\right]\right\}$. For what value of $m$ is $C=A+B$ not a direct sum?

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) 3
9) Let $S=\left\{u_{1}, u_{2}, u_{3}\right\}$ be a linearly independent set in $\mathbb{R}^{n}$, which of the following are 3 points true?

The set $\left\{u_{1}+u_{2}, u_{2}+u_{3}, u_{3}+u_{1}\right\}$ is linearly independent.

The set $\left\{u_{1}-u_{2}, u_{2}-u_{3}, u_{3}-u_{1}\right\}$ is linearly independent.

The set $\left\{u_{1}, u_{1}+u_{2}, u_{1}+u_{2}+u_{3}\right\}$ is linearly independent.

The set $\left\{u_{1}-2 u_{2}, u_{2}-2 u_{3}, u_{3}-2 u_{1}\right\}$ is linearly independent.
No, the answer is incorrect.
Score: 0
Accepted Answers:
The set $\left\{u_{1}+u_{2}, u_{2}+u_{3}, u_{3}+u_{1}\right\}$ is linearly independent.
The set $\left\{u_{1}, u_{1}+u_{2}, u_{1}+u_{2}+u_{3}\right\}$ is linearly independent.
The set $\left\{u_{1}-2 u_{2}, u_{2}-2 u_{3}, u_{3}-2 u_{1}\right\}$ is linearly independent.
10) What is the maximum value of $x-2 y+z$ subject to the
constraint $x^{2}+2 y^{2}+z^{2}=1$ ?
No, the answer is incorrect.
Score: 0
Accepted Answers:
2

