ourses » Mathemat	ical Methods and Techniques in Signal Processing
Veek 2 - Ve Spaces - II	Announcements Course Ask a Question Progress FAQ
Register for Certification exam	Assignment 02
Course outline	The due date for submitting this assignment has passed. As per our records you have not submitted this Due on 2019-02-13, 23:59 IST. assignment.
How to access the portal	Instructions:
Week 0 - Background and Prerequisites	 Submission deadline: 13th February 2019 23:55 IST Solutions to be posted: 14th February 2019 Older browsers might show unnecessary vertical bars at the end of math equations
Week 1 - Introduction to Signal Processing, State Space Representation and Vector Spaces - I	1) Consider the vectors $u = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $v = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$ in \mathbb{R}^3 . Let us consider the inner product, $\langle u,v angle = u_1v_1 + b(u_2v_2) + u_3v_3$
Week 2 - Vector Spaces - II	where $b\in\mathbb{R}$. u_i and v_i represent the $i^{ ext{th}}$ element of u and v respectively. For what value of b are the vectors u and v orthogonal?
 Linear independence and spanning set 	No, the answer is incorrect.
Unique representation theorem	Score: 0 Accepted Answers: (Type: Numeric) 2
Basis and cardinality of	1 poi
basis Norms and inner product spaces	2) Let $S = \{a, b, c, d\}$ be a subset of \mathbb{R}^5 where $\begin{bmatrix} 1\\0\\1\\1\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\$

Funded by

Mathematical Methods and Techniques in Signa...

Problem on	
sum of subspaces	ce De 5
Quiz : Assignment 02	No, the answer is incorrect. Score: 0
Assignment 2 - Solutions	Accepted Answers: 3
Week 3 - Vector Spaces - III and	3) Consider the vectors $u = \begin{bmatrix} 1 & -2 & 3 \end{bmatrix}^T$ and $v = \begin{bmatrix} -2 & 4 & -6 \end{bmatrix}^T$ in \mathbb{R}^3 . Using which of 1.5 points the following sets can these vectors be represented uniquely?
Signal Geometry	
Week 4 - Probability and Random	$A = \{ [1 \ -2 \ 3]^{\mathrm{T}} \}$
Processes	$B = \{ [1 \ 0 \ 0]^{\mathrm{T}}, [0 \ 0 \ 1]^{\mathrm{T}} \}$
Week 5 - Sampling Theorem and Multirate Systems - I	$C = \{ [1 - 2 3]^{\mathrm{T}}, [-2 4 - 6]^{\mathrm{T}} \}$ None of the above
Week 6 -	No, the answer is incorrect.
Systems - II	Accepted Answers:
Week 7 - Multirate Systems - III	$A = \{ [1 - 2 \ 3]^{\mathrm{T}} \}$ 4) The L_2 -norm of $g(x) = 5x^2 - 3x - 1$ over $[0,1]$ is 1.5 points
Week 8 - Multirate Systems - IV	$\sqrt{\frac{5}{6}}$
Week 9 - Wavelets - I	$\sqrt{\frac{25}{6}}$
Week 10 - Wavelets - II and Continuity of Functions	$\sqrt{\frac{7}{6}}$
Week 11 - Fourier Series - I	$\sqrt{6}$ No, the answer is incorrect.
Week 12 - Fourier Series - II and KL Transform	Accepted Answers: $\sqrt{\frac{7}{6}}$
Interaction Session	S) Consider vectors $x, y, z \in \mathbb{R}^{-}$ such that $y = x - z$ and $ x = z $. Let θ_1 be the <i>z</i> points angle between x and y . Let θ_2 be the angle between z and y . Which of the following relations does θ_1 and θ_2 always satisfy?
	$ cos heta_1 = cos heta_2 $
	$ \cos\theta_{\perp} ^2 + \cos\theta_{\perp} ^2 = 1$

 $|\cos heta_1|^2 + |\sin heta_2|^2 = 1$

No relation exists.

No, the answer is incorrect. Score: 0 **Accepted Answers:** $|cos\theta_1| = |cos\theta_2|$ $|\cos \theta_1|^2 + |\sin \theta_2|^2 = 1$ 6) If u and v are orthogonal vectors in the inner product space ${\mathcal V}$, such 2 points that ||u|| = 6 and ||u+v|| = 10 , then what is the value of ||v|| and ||u-v|| ? 4, 28.10 \bigcirc 6, 12 \bigcirc $8, \sqrt{28}$ No, the answer is incorrect. Score: 0 **Accepted Answers:** 8,10 7) Find the dimension of the plane 2x - 3y = 0 in \mathbb{R}^3 . No, the answer is incorrect. Score: 0 **Accepted Answers:** (Type: Numeric) 2 2 points 8) Let A and B be subspaces of the vector space of 2 imes 2 matrices defined over integers. Then, subspace C is said to be the direct sum of A and B if C = A + B and $A \cap B = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$. The basis of the subspaces are given by $\mathcal{B}_A = \left\{ \begin{bmatrix} m - 12 & 9 \\ 0 & m \end{bmatrix}, \begin{bmatrix} 0 & m \\ 1 & 2 \end{bmatrix} \right\}$ and $\mathcal{B}_B = \left\{ \begin{bmatrix} m & 0 \\ 1 & 1 \end{bmatrix} \right\}$. For what value of m is C = A + B not a direct sum? No, the answer is incorrect. Score: 0 **Accepted Answers:** (Type: Numeric) 3 2.5 points 9) Let $S=\{u_1,u_2,u_3\}$ be a linearly independent set in \mathbb{R}^n , which of the following are 3 points true? The set $\{u_1+u_2, u_2+u_3, u_3+u_1\}$ is linearly independent. The set $\{u_1 - u_2, u_2 - u_3, u_3 - u_1\}$ is linearly independent.

The set $\{u_1,u_1+u_2,u_1+u_2+u_3\}$ is linearly independent. The set $\{u_1-2u_2,u_2-2u_3,u_3-2u_1\}$ is linearly independent.	
No, the answer is incorrect. Score: 0	
Accepted Answers: The set $\{u_1 + u_2, u_2 + u_3, u_3 + u_1\}$ is linearly independent. The set $\{u_1, u_1 + u_2, u_1 + u_2 + u_3\}$ is linearly independent. The set $\{u_1 - 2u_2, u_2 - 2u_3, u_3 - 2u_1\}$ is linearly independent.	
10)What is the maximum value of $x-2y+z$ subject to the constraint $x^2+2y^2+z^2=1$?	3 points
0	
No, the answer is incorrect. Score: 0	
Accepted Answers: 2	

Previous Page

End