Courses » Mathematical Methods and Techniques in Signal Processing

Week 1 -
Introduction to Signal Processing, State Space Representation and Vector Spaces - I

Register for Certification exam	Assignment 01
Course outline	The due date for submitting this assignment has passed. Due on 2019-02-13, 23:59 IST. Assignment submitted on 2019-02-08, 13:44 IST
How to access the portal	Instructions: 1. Attempt all questions.
Week 0 - Background and Prerequisites	2. Submission deadline: 13th February 2019 23:59 IST 3. Solutions to be posted: 14th February 2019 4. Older browsers might show unnecessary vertical bars at the end of math equations.
Week 1 - Introduction to Signal Processing, State Space Representation and Vector Spaces - I	1) The inverse of a causal LTI system, $y(t)=x(t-m-n)$ is always causal. True False No, the answer is incorrect.
Introduction to signal processing	Score: 0 Accepted Answers: False
Basics of signals and systems	2) Consider the causal LTI system described by the difference equation $2 y[n]=3 y[n-1]+y[n-2]+x[n]$. The given system is BIBO stable.
Linear time-invariant systems	True False
Modes in a linear system	No, the answer is incorrect. Score: 0
Introduction to state space representation	Accepted Answers: False
	Sthnnammanitionnftainlimanrmamninlimanr amaint

© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -
NPTEL Neman Prosmmon Technology Enhanced Learning

$$
\begin{aligned}
& \frac{1}{4} \text { and } \frac{1}{2} \\
& \frac{1}{2} \text { and } \frac{1}{2} \\
& -\frac{1}{2} \text { and } \frac{1}{2}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0

Accepted Answers:

$\frac{1}{2}$ and $\frac{1}{2}$
8) Let an auto-regressive system with output $y[n]$ for the forcing function $f[n]$ be given 3 points by $y[n+2]+2 y[n+1]+y[n]=f[n+2]+3 f[n+1]+5 f[n]$. Which among the following gives a state-space representation of the system?

$$
\mathbf{A}=\left[\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{l}
4 \\
1
\end{array}\right], \quad d=1
$$

$$
\mathbf{A}=\left[\begin{array}{ll}
0 & -1 \\
1 & -2
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{l}
4 \\
1
\end{array}\right], \quad d=1
$$

$$
\mathbf{A}=\left[\begin{array}{cc}
-1 & 0 \\
2 & -1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
0.5 \\
-1
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{l}
8 \\
3
\end{array}\right], \quad d=1
$$

$$
\mathbf{A}=\left[\begin{array}{cc}
-2 & -1 \\
1 & 0
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{l}
1 \\
4
\end{array}\right], \quad d=1
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
9) A discrete-time system with forcing function $f[n]$ and output $y[n]$ is represented using state variables $u[n]$ and $w[n]$ as

$$
\begin{aligned}
w[n+1] & =2 u[n]+3 f[n], \\
u[n+1] & =w[n]+2 f[n], \\
y[n] & =u[n]+3 w[n]+f[n] .
\end{aligned}
$$

Which of the following represent the state space parameters $\left(\mathbf{A}, \mathbf{b}, \mathbf{c}^{\mathrm{T}}, \mathbf{d}\right)$ of the system?

$$
\mathbf{A}=\left[\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
3 \\
2
\end{array}\right], \mathbf{c}^{\mathrm{T}}=\left[\begin{array}{ll}
1 & 3
\end{array}\right], \mathrm{d}=1
$$

$$
\mathbf{A}=\left[\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
3 \\
2
\end{array}\right], \mathbf{c}^{\mathrm{T}}=\left[\begin{array}{ll}
3 & 1
\end{array}\right], \mathrm{d}=1
$$

$$
\mathbf{A}=\left[\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
2 \\
3
\end{array}\right], \mathbf{c}^{\mathrm{T}}=\left[\begin{array}{ll}
1 & 3
\end{array}\right], \mathrm{d}=1
$$

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{l}
4 \\
1
\end{array}\right], \quad d=1 \\
& \mathbf{A}=\left[\begin{array}{cc}
-1 & 0 \\
2 & -1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
0.5 \\
-1
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{l}
8 \\
3
\end{array}\right], \quad d=1 \\
& \mathbf{A}=\left[\begin{array}{cc}
-2 & -1 \\
1 & 0
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{l}
1 \\
4
\end{array}\right], \quad d=1
\end{aligned}
$$

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
2 \\
3
\end{array}\right], \mathbf{c}^{\mathrm{T}}=\left[\begin{array}{ll}
3 & 1
\end{array}\right], \mathrm{d}=1
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\mathbf{A}=\left[\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right], \mathbf{b}=\left[\begin{array}{l}3 \\ 2\end{array}\right], \mathbf{c}^{\mathrm{T}}=\left[\begin{array}{ll}3 & 1\end{array}\right], \mathrm{d}=1$
$\mathbf{A}=\left[\begin{array}{ll}0 & 1 \\ 2 & 0\end{array}\right], \mathbf{b}=\left[\begin{array}{l}2 \\ 3\end{array}\right], \mathbf{c}^{\mathrm{T}}=\left[\begin{array}{ll}1 & 3\end{array}\right], \mathrm{d}=1$
${ }^{10)}$ The state space representation of a LTI system has $\mathbf{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then which of the 1 poirs following statements should hold true always for $\mathbf{A}^{\prime}=\left[\begin{array}{ll}p & q \\ r & s\end{array}\right]$ to also represent the same system

1. $\operatorname{det}(\mathbf{A})=\operatorname{det}\left(\mathbf{A}^{\prime}\right)$
2. eigenvalues of $\mathbf{A}=$ eigenvalues of \mathbf{A}^{\prime}
3. $\operatorname{Trace}(\mathbf{A})=\operatorname{Trace}\left(\mathbf{A}^{\prime}\right)$

Which of the following statements are true:Only 1 and 2Only 1 and 3Only 2 and 31, 2 and 3None of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
1, 2 and 3
11__et \mathcal{S}_{1} and \mathcal{S}_{2} be two different subspaces in the vector space \mathcal{V} such
2.5 points that $\mathcal{S}_{1} \nsubseteq \mathcal{S}_{2}$ and $\mathcal{S}_{2} \nsubseteq \mathcal{S}_{1}$, then which of the following are vector spaces?

$$
\mathcal{S}_{1} \backslash \mathcal{S}_{2}
$$

$\mathcal{S}_{1} \cup \mathcal{S}_{2}$
$\mathcal{S}_{1} \cap \mathcal{S}_{2}$

$$
\left\{\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right) \mid \mathbf{v}_{1} \in \mathcal{S}_{1}, \mathbf{v}_{2} \in \mathcal{S}_{2}\right\} \text { with }\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)+\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=\left(\mathbf{u}_{1}+\mathbf{v}_{1}, \mathbf{u}_{2}+\mathbf{v}_{2}\right)
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\mathcal{S}_{1} \cap \mathcal{S}_{2}$
$\left\{\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right) \mid \mathbf{v}_{1} \in \mathcal{S}_{1}, \mathbf{v}_{2} \in \mathcal{S}_{2}\right\}$ with $\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)+\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=\left(\mathbf{u}_{1}+\mathbf{v}_{1}, \mathbf{u}_{2}+\mathbf{v}_{2}\right)$
12Consider the vector space $\mathbb{R}^{n \times n}$. Then $\mathcal{W}=\left\{A \in \mathbb{R}^{n \times n}: \operatorname{Trace}(A)=1\right\}$ is a 1 point subspace of $\mathbb{R}^{n \times n}$.TrueFalse

No, the answer is incorrect.
Score: 0
Accepted Answers:
False

