

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

NASSCOM

In association with

Mathematical Methods and Techniques in Signa...

Quiz : Assignment 01	Accepted Answers: True		
Assignment 1 -	4) Given the output of the LTI sy	vstem $y(t)=x(t)st h(t)$. The value of $y(5t)$ is	1.5 points
Week 2 - Vector			
Spaces - II	O(x(t) * h(t))		
Week 3 - Vector Spaces - III and Signal Geometry	$\frac{1}{25}(x(5t)*h(5t))$		₽ ₽
Week 4 -	5(x(5t)*h(5t))		201
Probability and Random Processes	$rac{1}{5}(x(t)*h(t))$		2
Week 5 -	No, the answer is incorrect. Score: 0		2
Sampling Theorem and	Accepted Answers:		2
Multirate Systems - I	5(x(5t) * h(5t))	$d = u[n] - T(w[n]) - \frac{1}{2}$. Which of the following	2 nointe
Week 6 -	b) A reciprocal system is defined as $y[n] = T(x[n]) = \frac{1}{x[n]}$. Which of the following 2 points statement(s) given below are true about the reciprocal system.		
Multirate Systems - II			
Week 7 -	Time invariant		
Multirate Systems - III	Non-linear		
Week 8 -	Week 8 - Image: Series connection of two such systems is not a linear system Multirate No, the answer is incorrect.		
Multirate Systems - IV			
Week 9 -	Score: 0 Accepted Answers:		
Wavelets - I	Time invariant		
Week 10 - Wavelets - II and	s - II and 6) Consider an LTI system described as 2 point		2 points
Functions	$\mathbf{x}[n+1] = egin{bmatrix} -1 & 0 \ 1 & 1 \end{bmatrix} \mathbf{x}[n] + egin{bmatrix} \mathbf{x}[n] + egin{bmatrix} \mathbf{x}[n] \end{bmatrix} \mathbf{x}[n]$	$+ egin{bmatrix} 3 \ A \end{bmatrix} f[n]; y[n] = [egin{array}{cc} 1 & 0] {f x}[n].$,
Week 11 - Fourier Series - I			in airea
Week 12 -	by $H(z) = rac{Y(z)}{F(z)}$	present in the system? The transfer function of the system	i is given
Fourier Series - II and KL			
Transform			
Interaction Session	2		
	4		
	No, the answer is incorrect. Score: 0		
	Accepted Answers:		
	7) Determine the modes of the s	system with impulse	2 points
	response $y(n) = \{1, rac{3}{4}, rac{1}{2}, rac{5}{16}, \ldots\}$.		
	$\frac{1}{4}$ and $-\frac{1}{4}$		

-

교

$$\frac{1}{4} \text{ and } \frac{1}{2}$$

$$\frac{1}{2} \text{ and } \frac{1}{2}$$

$$-\frac{1}{2} \text{ and } \frac{1}{2}$$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$$\frac{1}{2} \text{ and } \frac{1}{2}$$

8) Let an auto-regressive system with output y[n] for the forcing function f[n] be given **3 points** by y[n+2] + 2y[n+1] + y[n] = f[n+2] + 3f[n+1] + 5f[n]. Which among the following gives a state-space representation of the system?

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \quad d = 1$$
$$\mathbf{A} = \begin{bmatrix} 0 & -1 \\ 1 & -2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \quad d = 1$$
$$\mathbf{A} = \begin{bmatrix} -1 & 0 \\ 2 & -1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0.5 \\ -1 \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} 8 \\ 3 \end{bmatrix}, \quad d = 1$$
$$\mathbf{A} = \begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}, \quad d = 1$$

No, the answer is incorrect.

Score: 0

Accepted Answers:

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \quad d = 1$$

$$\mathbf{A} = \begin{bmatrix} -1 & 0 \\ 2 & -1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0.5 \\ -1 \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} 8 \\ 3 \end{bmatrix}, \quad d = 1$$

$$\mathbf{A} = \begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}, \quad d = 1$$

9) A discrete-time system with forcing function f[n] and output y[n] is represented using **2** points state variables u[n] and w[n] as

 $egin{aligned} w[n+1] &= 2u[n] + 3f[n], \ u[n+1] &= w[n] + 2f[n], \ y[n] &= u[n] + 3w[n] + f[n]. \end{aligned}$

Which of the following represent the state space parameters $(\mathbf{A},\mathbf{b},\mathbf{c}^{\mathrm{T}},\mathbf{d})$ of the system?

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \mathbf{c}^{\mathrm{T}} = \begin{bmatrix} 1 & 3 \end{bmatrix}, \mathbf{d} = 1$$
$$\mathbf{A} = \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \mathbf{c}^{\mathrm{T}} = \begin{bmatrix} 3 & 1 \end{bmatrix}, \mathbf{d} = 1$$
$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \mathbf{c}^{\mathrm{T}} = \begin{bmatrix} 1 & 3 \end{bmatrix}, \mathbf{d} = 1$$

Mathematical Methods and Techniques in Signa...

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, b = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, c^{T} = [3 \quad 1], d = 1$$
No, the answer is incorrect.
Score: 0
Accepted Answers:

$$A = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}, b = \begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix}, c^{T} = [3 \quad 1], d = 1$$

$$A = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}, b = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, c^{T} = [1 \quad 3], d = 1$$
10
The state space representation of a LTI system has $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then which of the **Ipoint**
following statements should hold true always for $A' = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$ to also represent the same system
1. det(A) = det(A')
2. eigenvalues of A = eigenvalues of A'
3. Trace(A) = Trace(A')
Which of the following statements are true:
0. Only 1 and 2
0. Only 1 and 3
0. Only 2 and 3
1. 2 boints
that S_1 & & S_2 \\

False

Mathematical Methods and Techniques in Signa...

뮲

No, the answer is incorrect. Score: 0	
Accepted Answers: False	
Previous Page	End