	ายงยพยา+เษา	ptel.litm.ac.
ourses » Mathemati	ical Methods and Techniques in Signal Processing	2
Veek 12 - F Series - II a	Announcements Course Ask a Question Progress Fourier nd KL Transform	FAQ
Register for Certification exam	Assignment 12	2
Course outline	The due date for submitting this assignment has passed.As per our records you have not submitted thisDue on 2019-04-24, 23assignment.	3:59 IST.
How to access the portal	Instructions:	
Week 0 - Background and Prerequisites	 Attempt an questions. Submission deadline: 24th April 2019 23:59 IST Solutions to be posted: 25th April 2019 Older browsers might show unnecessary vertical bars at the end of math equations. 	
M/1- 4	·	
Week 1 - Introduction to Signal Processing, State Space Representation and Vector Spaces - I	1) Consider the vector $v = [1 \ 4 \ 8]^T$. Let A be the KL transform obtained from a set of v containing v . What is the norm of the vector $u = Av$ obtained after performing KL Transform vector v ? Provide your answer upto two decimal places.	rectors orm on the
Week 1 - Introduction to Signal Processing, State Space Representation and Vector Spaces - I Week 2 - Vector Spaces - II	1) Consider the vector $v = [1 \ 4 \ 8]^T$. Let A be the KL transform obtained from a set of v containing v . What is the norm of the vector $u = Av$ obtained after performing KL Transforvector v ? Provide your answer upto two decimal places. No, the answer is incorrect. Score: 0	rectors orm on the
Week 1 - Introduction to Signal Processing, State Space Representation and Vector Spaces - I Week 2 - Vector Spaces - II Week 3 - Vector Spaces - III and Signal Geometry	1) Consider the vector $v = [1 \ 4 \ 8]^T$. Let A be the KL transform obtained from a set of v containing v . What is the norm of the vector $u = Av$ obtained after performing KL Transforvector v ? Provide your answer upto two decimal places. No, the answer is incorrect. Score: 0 Accepted Answers: (Type: Numeric) 9.00	rectors form on the 1.5 point
Week 1 - Introduction to Signal Processing, State Space Representation and Vector Spaces - I Week 2 - Vector Spaces - II Week 3 - Vector Spaces - II Week 3 - Vector Spaces - III and Signal Geometry Week 4 - Probability and Random Processes	1) Consider the vector $v = [1 \ 4 \ 8]^T$. Let A be the KL transform obtained from a set of v containing v . What is the norm of the vector $u = Av$ obtained after performing KL Transforvector v ? Provide your answer upto two decimal places. No, the answer is incorrect. Score: 0 Accepted Answers: (<i>Type: Numeric</i>) 9.00 2) Which of the following functions belong to $L^2[0, 1]$?	rectors form on the 1.5 point 2 point

A project of

 NPTEL
 National Programme on

 Technology Enhanced Learning

NASSCOM

Funded by

Mathematical Methods and Techniques in Signa...

Week 8 - Multirate	ce De $f_1(x) = egin{cases} k & 0 \leq x \leq 1 \ 0 & ext{else} \end{cases} ext{ where } 100 - k > 0$
Systems - IV	$f_3(x)=\sin mx ext{ where } m\geq 0 ext{ and } m\in \mathbb{Z} \ f_4(x)=x^m ext{ where } m>0, ext{ m is finite and } m\in \mathbb{Z}$
Week 9 - Wavelets - I	3) (True/False): Consider the function $f(x) = \sin 45x \cos 45x$ Let $f_N(x)$ be the 2 points orthogonal projection of $f(x)$ onto the space V_N , as defined in Lecture 71. As $f(x)$ is a scaled
Week 10 - Wavelets - II and Continuity of	version of a basis function in the Fourier basis, there exists $L\in\mathbb{Z}$ such that $f_N(x)=f(x)$ for $N=L$ and $f_N(x)=0$ for $N eq L.$
Week 11 -	False
Week 12 - Fourier Series - II and KL	No, the answer is incorrect. Secore: 0 Accepted Answers: Secore: 0 False Secore: 0
Convergence in norm of Fourier	4) Consider the following optimization problem: minimize $x^T x$ subject to $\{a^T x = b_i\}$ for $i \in \{1, 2,, n\}$ where $a_i, x \in \mathbb{R}^m, b_i \in \mathbb{R}$.
Convergence of Fourier series for all square integrable periodic functions	Consider $\{\nu_i\}$'s to be the Lagrange multipliers. Then, the Lagrangian is obtained as $L(x, \nu_1, \dots, \nu_n) = x^{\mathrm{T}}x + \sum_{i=1}^n \nu_i (a_i^{\mathrm{T}}x - b_i)$. Using this Lagrangian, we reduce the problem to the following problem
Problem on limits of integration of periodic functions	$\begin{array}{l} \underset{x}{\text{minimize } x^{T}x + \sum_{i=1}^{n} \nu_{i}(a_{i}^{T}x - b_{i})} \\ \text{As this is an unconstrained problem, we solve it by equating the derivative of the Lagrangian with respect to x to 0. Find the value of x which gives the optimal solution. \\ \hline \end{array}$
O Matrix Calculus	0
C KL transform	$\sum_{i=1}^n u_i a_i^{\mathrm{T}}$
Applications of KL transform	
Demo on KL Transform	$rac{\sum_{i=1}^n u_i b_i - u_i a_i^{\mathrm{T}}}{2}$
Quiz : Assignment 12	$-rac{\sum_{i=1}^n u_i a_i}{2}$
 Assignment 12 Solutions 	No, the answer is incorrect. Score: 0
Interaction Session	Accepted Answers: $-rac{\sum_{i=1}^n u_i a_i}{2}$
	5) (True/False): The following points are uncorrelated : $[1 \ 1]^{T}$, $[2 \ -2]^{T}$, $[1 \ 4]^{T}$ and $[0 \ 1]^{T}$.
	True False
	No, the answer is incorrect. Score: 0
	Accepted Answers: False
	6) Which of the following vectors are the dominant eigenvectors of the covariance 2 <i>points</i>

matrix
$$C = \begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix}$$
?
 $\begin{bmatrix} 3 & -3 \end{bmatrix}^{T}$
 $\begin{bmatrix} -1 & -1 \end{bmatrix}^{T}$
 $\begin{bmatrix} 4 & -1 \end{bmatrix}^{T}$
 $\begin{bmatrix} 1 & 1 \end{bmatrix}^{T}$
No, the answer is incorrect.
Score: 0
Accepted Answers:
 $\begin{bmatrix} -1 & -1 \end{bmatrix}^{T}$
 $\begin{bmatrix} 1 & 1 \end{bmatrix}^{T}$

7) Consider the covariance matrix C given below obtained from 5 random vectors of length 3.

	3	-1	2	
C =	-1	6	2	
	2	2	3	

We intend to reduce the dimension of the vectors while retaining 95% of the energy. To what dimension can we reduce the vectors?

No, the answer is incorrect. Score: 0 Accepted Answers:

(Type: Numeric) 2

-

2 points

8) Consider the vectors $\begin{bmatrix} 0 & 2 \end{bmatrix}^T$, $\begin{bmatrix} 0 & -6 \end{bmatrix}^T$, $\begin{bmatrix} 6 & 0 \end{bmatrix}^T$, and $\begin{bmatrix} -2 & 0 \end{bmatrix}^T$. With **1.5 points** reference to lecture 76, which of the following represents the covariance matrix of these vectors?

$$\begin{bmatrix} 36 & 4 \\ 4 & 36 \end{bmatrix}$$

$$\begin{bmatrix} 12 & 1.33 \\ 1.33 & 12 \end{bmatrix}$$

$$\begin{bmatrix} 9 & 1 \\ 1 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 9 & 1 \\ 1 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
No, the answer is

No, the answer is incorrect. Score: 0

Accepted Answers:

Mathematical Methods and Techniques in Signa...

36	4
4	36

9) Using the KL transform obtained using the vectors in Question 8, let $\begin{bmatrix} a & b \end{bmatrix}^T$ be the KL transform of $\begin{bmatrix} 3 & -5 \end{bmatrix}^T$. Let the lower energy correspond to the second coordinate. Consider the eigenvectors in obtaining the KL transform to be normalized. What is |a||b|?

*	
No, the answer is incorrect.	202
Score: 0	Ģ
Accepted Answers:	[<u>~</u>
(Type: Numeric) 8	Ģ
	2.5 points
10) (True/False): As $f_n(x)=egin{cases}1&rac{3}{5}-rac{1}{n^2}\leq x\leqrac{3}{5}+rac{1}{n^2}\\0& ext{else}\end{cases}$ converges	2.5 points
to 0 in $L^2[0,1]$, it also converges uniformly to 0 in $[0,1]$.	
True	
False	
No, the answer is incorrect.	
Score: 0	
Accepted Answers:	
False	

Previous Page

End