Courses » Mathematical Methods and Techniques in Signal Processing

Announcements Course Ask a Question Progress FAQ

Week 12 - Fourier

Series - II and KL Transform

```
Register for Certification exam
```

Course
outline

How to access the portal

Week 0 -
Background and Prerequisites

Week 1 -
Introduction to
Signal
Processing,
State Space
Representation and Vector
Spaces - I

Week 2 - Vector Spaces - II

Week 3 - Vector
Spaces - III and
Signal Geometry

Week 4 -
Probability and
Random
Processes

Week 5 -
Sampling
Theorem and Multirate Systems - I

Assignment 12

The due date for submitting this assignment has passed.
As per our records you have not submitted this Due on 2019-04-24, 23:59 IST. assignment.

Instructions:

1. Attempt all questions.
2. Submission deadline: 24th April 2019 23:59 IST
3. Solutions to be posted: 25th April 2019
4. Older browsers might show unnecessary vertical bars at the end of math equations.
1) Consider the vector $v=\left[\begin{array}{ll}1 & 4\end{array}\right]^{\mathrm{T}}$. Let A be the KL transform obtained from a set of vectors containing v. What is the norm of the vector $u=A v$ obtained after performing KL Transform on the vector v ? Provide your answer upto two decimal places.

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) 9.00
1.5 points
2) Which of the following functions belong to $L^{2}[0,1]$?

2 points

$$
f_{1}(x)=\left\{\begin{array}{ll}
k & 0 \leq x \leq 1 \\
0 & \text { else }
\end{array} \text { where } 100-|k|>0\right.
$$

$f_{2}(x)=\frac{1}{x^{m}}$ where $m>0$ and $m \in \mathbb{Z}$
$f_{3}(x)=\sin m x$ where $m \geq 0$ and $m \in \mathbb{Z}$
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -
NPTEL
National Programme on Technology Enhanced Learning

No, the answer is incorrect.
Score: 0
Accepted Answers:
False
6) Which of the following vectors are the dominant eigenvectors of the covariance

2 points

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\left.\begin{array}{l}
{\left[\begin{array}{ll}
-1 & -1
\end{array}\right]^{\mathrm{T}}} \\
{[1}
\end{array} 1\right]^{\mathrm{T}} \mathrm{l}
$$

7) Consider the covariance matrix C given below obtained from 5 random vectors of length 3 .
$C=\left[\begin{array}{ccc}3 & -1 & 2 \\ -1 & 6 & 2 \\ 2 & 2 & 3\end{array}\right]$

We intend to reduce the dimension of the vectors while retaining 95% of the energy. To what dimension can we reduce the vectors?

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) 2
2 points
8) Consider the vectors $\left[\begin{array}{ll}0 & 2\end{array}\right]^{\mathrm{T}},\left[\begin{array}{ll}0 & -6\end{array}\right]^{\mathrm{T}},\left[\begin{array}{ll}6 & 0\end{array}\right]^{\mathrm{T}}$, and $\left[\begin{array}{ll}-2 & 0\end{array}\right]^{\mathrm{T}}$. With $\quad 1.5$ points reference to lecture 76 , which of the following represents the covariance matrix of these vectors?
$\left[\begin{array}{cc}36 & 4 \\ 4 & 36\end{array}\right]$
$\left[\begin{array}{cc}12 & 1.33 \\ 1.33 & 12\end{array}\right]$
$\left[\begin{array}{ll}9 & 1 \\ 1 & 9\end{array}\right]$
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$\left[\begin{array}{cc}36 & 4 \\ 4 & 36\end{array}\right]$
9) Using the KL transform obtained using the vectors in Question 8, let $\left[\begin{array}{ll}a & b\end{array}\right]^{\mathrm{T}}$ be the KL transform of $\left[\begin{array}{ll}3 & -5\end{array}\right]^{\mathrm{T}}$. Let the lower energy correspond to the second coordinate. Consider the eigenvectors in obtaining the KL transform to be normalized. What is $|a||b|$?

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) 8

2.5 points

${ }^{10)}$ (True/False): As $f_{n}(x)= \begin{cases}1 & \frac{3}{5}-\frac{1}{n^{2}} \leq x \leq \frac{3}{5}+\frac{1}{n^{2}} \text { converges } \\ 0 & \text { else }\end{cases}$
to 0 in $L^{2}[0,1]$, it also converges uniformly to 0 in $[0,1]$.TrueFalse
No, the answer is incorrect.
Score: 0
Accepted Answers:
False

