ourses » Mathema	atical Methods and Techniques in Signal Processing		
Announcements Course Ask a Question Progress FAQ Neek 9 - Wavelets -			
Register for Certification exam	Assignment 09		
Course outline	The due date for submitting this assignment has passed. As per our records you have not submitted this Due on 2019-04-03, 23:59 IS assignment.		
How to access the portal	Instructions:		
Week 0 - Background and Prerequisites	 Attempt all questions. Submission deadline: 3rd April 2019 23:59 IST Solutions to be posted: 4th April 2019 Older browsers might show unnecessary vertical bars at the end of math equations 		
Week 1 - Introduction to Signal Processing, State Space Representation and Vector Spaces - I	1) Choose the correct statement about representation of a continuous signal using Haar 1.5 point wavelets.		
Week 2 - Vector Spaces - II	Any continuous signal can be exactly represented using finite levels of Haar decomposition.		
Week 3 - Vector Spaces - III and Signal Geometry	Since the scaling function $\phi(t)$ is non-zero in $t\in[0,1]$, the signal can be represented using Haar wavelets only if it is non-zero in $t\in[0,1]$ and zero otherwise.		
Week 4 - Probability and Random Processes	No, the answer is incorrect.Score: 0Accepted Answers:The signal can be approximated using step functions.		
Week 5 - Sampling Theorem and	2) (True/False): If $x(t)$ is in V_0 and $y(t)$ is in V_1 , then $y(t)-x(t)$ is in W_1 . 1.5 point		

NASSCOM® Funded by Mathematical Methods and Techniques in Signa...

Week 3 -
Multirac
Systems - IV
Week 3 -
Multiraction to
wavelets:
Introduction to
wavelets:
Multiraction to
wavelets:
Multiraction to
mapping and the answer is incorrect.
Score: 0
No, the answer is incorrect.
Score: 0
Acsepted Answers:

$$\psi(2^{j-1}t) = \phi(2^jt) - \phi(2^jt - 1)$$

 $\psi(t - 2) = \phi(2t - 4) + \phi(2t - 5)$
No, the answer is incorrect.
Score: 0
Acsepted Answers:
 $\psi(2^{j-1}t) = \phi(2^jt) - \phi(2^jt - 1)$
 $\psi(t - 3) = \phi(2t - 6) + \phi(2t - 7)$
No, the answer is incorrect.
Score: 0
Acsepted Answers:
 $\psi(2^{j-1}t) = \phi(2^jt) - \phi(2^jt - 1)$
 $\psi(t - 3) = \phi(2t - 6) + \phi(2t - 7)$
A) The fth scole approximation of a signal $f(t)$ using Haar wavelets can be written in two **15** points
f_j (t) $= \sum_{k=-\infty}^{\infty} a_k^{(j)} \phi(2^{j-1}t - k) + \sum_{k=-\infty}^{\infty} b_k^{(j)} \psi(2^{j-1}t - k)$
 $f_j(t) = \sum_{k=-\infty}^{\infty} a_k^{(j)} \phi(2^jt - k)$
Choose the correct statements.
 $f_j(t) = \sum_{k=-\infty}^{\infty} a_k^{(j)} \phi(2^jt - k)$
Choose the correct statements.
 $a_k^{(j)} = \frac{1}{2} (c_{2k}^{(j)} - c_{2k+1}^{(j)})$
 $b_k^{(j)} = \frac{1}{2} (c_{2k}^{(j)} -$

Mathematical Methods and Techniques in Signa...

$$f(t) = \frac{1}{2}\phi(t) + \frac{1}{2}\psi(2t) + \frac{5}{2}\psi(2t-1)$$

$$f(t) = \frac{1}{2}\phi(t) + \psi(t) + \frac{1}{2}\psi(2t) + \frac{5}{2}\psi(2t-1)$$
No, the answer is incorrect.
Score: 0
Accepted Answers:

$$f(t) = \frac{1}{2}\phi(t) + \frac{1}{2}\psi(2t) + \frac{5}{2}\psi(2t-1)$$
6) In question 5, what is the signal dimension of $f(t)$ in a space spanned by Haar scaling function $\phi(t)$, Haar wavelets $\psi(2^{i}t)$ and their time shifted versions?
No, the answer is incorrect.

 No, the answer is incorrect.

 Score: 0

 Accepted Answers: (Type: Numeric) 3

1.5 points

⁷⁾ In question 5, let $\hat{f}(t)$ be the signal obtained if the subspace corresponding to the details **1** *point* at the highest resolution is nulled out. What is $\hat{f}(t)$?

$$\hat{f}(t) = \frac{1}{2}\phi(t)$$

$$\hat{f}(t) = \frac{1}{2}\phi(t) + \psi(t)$$

$$\hat{f}(t) = \frac{1}{2}\phi(t) + \frac{1}{2}\psi(2t)$$

$$\hat{f}(t) = \phi(t) + \frac{1}{2}\psi(2t)$$

_

No, the answer is incorrect. Score: 0

Accepted Answers: $\hat{f}(t) = rac{1}{2}\phi(t)$

⁸⁾ From questions 5 and 7, $\mathbf{x}\%$ of the energy is lost in representing the signal f(t) as $\hat{f}(t)$. What is the value of \mathbf{x} ?(Round it to nearest integer).

No, the answer is incorrect. Score: 0	
Accepted Answers: (Type: Numeric) 93	
	2 points
9) We define a sequence of spaces as $\mathcal{V}_k= ext{Span}\left(\left\{\sinig(2\pi 2^k tig),\ \cosig(2\pi 2^k tig) ight\} ight)$ for $k=\cdots,-1,0,1,\cdots$. Choose the c statements.	2 points orrect
The spaces $\mathcal{V}_k,k\in\mathbb{Z}$ satisfy the nesting property.	

Mathematical Methods and Techniques in Signa...

$\bigcap^{k=\infty} \mathcal{V}_{k} = \{0\}$		
$\lim_{k \to -\infty} \nu_k = \{0\}.$		
The spaces $\mathcal{V}_k,k\in\mathbb{Z}$ satisfy the scaling property.	es $\mathcal{V}_k, \ k \in \mathbb{Z}$ satisfy the scaling property. he above. swer is incorrect.	
None of the above.		
No, the answer is incorrect.	5	
Score: 0		
Accepted Answers:	믔	
$\bigcap^{k=\infty} \mathcal{V}_{k} = \{0\}$		
$\lim_{k \to \infty} \nu_k = 10f.$		
The spaces $\mathcal{V}_k,k\in\mathbb{Z}$ satisfy the scaling property.	<u></u>	

10 Any function $f(t) \in L^2(\mathbb{R})$ can be approximated using j^{th} scale of Haar scaling **1.5 points** function as $f_j(t) = \sum_{k=-\infty}^{\infty} a_k^{(j)} \phi\left(2^j t - k\right)$. Which of the following expression is used to calculate the coefficients $a_k^{(j)}$?

$$egin{aligned} &a_k^{(j)} = \int\limits_{2^{-j}k}^{2^{-j}(k+1)} f\left(t
ight) dt \ &a_k^{(j)} = rac{\langle f(t), \phi(2^jt-k)
angle}{\langle \phi(2^jt-k), \phi(2^jt-k)
angle} \ &a_k^{(j)} = \langle f\left(t
ight), \phi\left(2^jt-k
ight)
angle \ &a_k^{(j)} = rac{1}{2^{-j}} \int\limits_{2^{-j}k}^{2^{-j}(k+1)} f\left(t
ight) dt \end{aligned}$$

No, the answer is incorrect. Score: 0

Accepted Answers:

$$a_k^{(j)} = rac{\langle f(t), \phi(2^{j}t-k)
angle}{\langle \phi(2^{j}t-k), \phi(2^{j}t-k)
angle}$$

 $a_k^{(j)} = rac{1}{2^{-j}} \int\limits_{2^{-j}k}^{2^{-j}(k+1)} f(t) \, dt$

11)The signal f(t) = 3t + 4 is approximated using the $j^{ ext{th}}$ scale approximation of Haar **2** points wavelets given by $f_j(t) = \sum_{k=-\infty}^{\infty} a_k^{(j)} \phi\left(2^j t - k\right)$. Choose the correct statements.

$$a_k^{(j)} = 2^{-j} \left(k + rac{1}{2}
ight) + 2$$

 $a_k^{(j)} = 3 imes 2^{-j} \left(k + rac{1}{2}
ight) + 4$
 $a_k^{(j)} = 3 imes 2^{-j} \left(k + 1
ight) + 2$
 $a_k^{(j)} = -2^{-j} \left(k + rac{1}{4}
ight) - 3$

No, the answer is incorrect.

Score: 0 Accepted Answers: $a_k^{(j)}=3 imes 2^{-j}\left(k+rac{1}{2} ight)+4$	
¹²⁾ Using question 11, what is the value of $8a_4^{(2)}-32a_3^{(4)}$?	2 points
0 102	
96	B
-90	_
-166	
No, the answer is incorrect. Score: 0	
Accepted Answers: -90	

Previous Page

End