Courses » Mathematical Methods and Techniques in Signal Processing

Week 0 -
 Background and Prerequisites

Multirate		$3 \mathrm{u}(n-1)$
Systems - II		

Week 7 -
Multirate
Systems - III
Week 8 -
Multirate
Systems - IV

Week 9 -

Wavelets - I
Week 10 -
Wavelets - II and
Continuity of
Functions

Week 11 -

Fourier Series - I
Week 12 -
Fourier Series -
II and KL
Transform
Interaction
Session

$$
\sum_{k=-\infty}^{\infty} 3 \mathrm{u}(n-1) \mathrm{u}(n-k)-3 \mathrm{u}(n-2) \mathrm{u}(n-k)
$$

$$
3 \mathbf{u}(n-1)-3 \mathbf{u}(n-2)
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$3 \mathrm{u}(n-1)$
3) Let $\mathcal{Z}(a(n))=A(z)$ and $\mathcal{Z}(b(n))=B(z)$. What is $B(z)$ in the system below?

$$
\sum_{i=1}^{k} g_{i} H_{i}(z)
$$

$$
g_{1} H_{1}(z)+g_{2} H_{2}(z)+g_{k} H_{k}(z)
$$

$$
\left(H_{1}^{g_{1}}(z)+H_{2}^{g_{2}}(z)+\cdots+H_{k}^{g_{k}}(z)\right) A(z)
$$

$$
\sum_{i=1}^{k} g_{i} H_{i}(z) A(z)
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\sum_{i=1}^{k} g_{i} H_{i}(z) A(z)$
4) Choose the causal systems.

$$
y(n)=x(n)
$$

$$
y(n)=x(-n)
$$

$$
y(n)=\frac{2}{1-x(n+1)}
$$

$$
y(n)=x(n) \sin (2 \pi(n+1))
$$

$$
y(n)=\sum_{i=-\infty}^{n} x(i)
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\begin{aligned}
& y(n)=x(n) \\
& y(n)=x(n) \sin (2 \pi(n+1)) \\
& y(n)=\sum_{i=-\infty}^{n} x(i)
\end{aligned}
$$

5) The Z-transform of $x[n]$ is $X(\mathrm{z})$. Compute the Z-transform of $n x[n]$.
$\mathrm{z} \frac{d X(\mathrm{z})}{d \mathrm{z}}$

$$
\begin{aligned}
& -\mathrm{z} \frac{d X(\mathrm{z})}{d \mathrm{z}} \\
& \mathrm{z}^{-1} \frac{d X(\mathrm{z})}{d \mathrm{z}} \\
& -\mathrm{z}^{-1} \frac{d X(\mathrm{z})}{d \mathrm{z}}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$-\mathrm{Z} \frac{d X(\mathrm{z})}{d \mathrm{z}}$
6) Which of the following cannot be a value of probability?0.221.001-0.1
No, the answer is incorrect.
Score: 0
Accepted Answers:
1.001
-0.1
7) Marbles numbered from 1 to 20 are mixed up and a marble is chosen at random. What is

1 point the probability that the marble drawn has a number which is a multiple of 3 or 5 ?

No, the answer is incorrect.
Score: 0
Accepted Answers:
9/20
8) A family has two children. What is the probability that both are boys, given that at least one is a boy? Assume that the probability of a random child being a boy or girl is 0.5 .

```
\frac{1}{2}
1
\frac{1}{4}
none of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
\frac{1}{3}
```

$$
\begin{aligned}
& \{(1,0),(2,2)\} \\
& \{(1,0),(1,1),(0,1)\} \\
& \{(1,1),(2,2)\} \\
& \{(1,1),(1,-1)\} \\
& \square \\
& \{(1,-1)\}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\{(1,0),(2,2)\}$
$\{(1,1),(1,-1)\}$
$\{(1,1),(1,-1)\}$
10)Three companies A, B, C manufacture light bulbs and have a market share in the

2 points ratio $0.35: 0.35: 0.3$. Probability of each of them producing a defective bulb is $0.01,0.02$ and 0.05 respectively. A randomly chosen bulb is found defective. What is the probability it was manufactured by company B ?

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\frac{14}{51}$
11)Which of the following functions are linear with respect to the variable in the bracket?

2 points
$\sin \theta \quad(\theta)$
$a \cos \phi \quad(a)$
$\frac{c}{d} \quad(d)$
$(a+b)^{2}-(a-b)^{2}$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$a \cos \phi \quad(a)$
$(a+b)^{2}-(a-b)^{2} \quad(b)$
12)
Find the eigenvalues of the matrix $\left[\begin{array}{rrrr}-5 & 0 & 2 & 3 \\ 0 & 1 & 4 & 2 \\ 0 & 0 & 3 & 6 \\ 0 & 0 & 0 & 5\end{array}\right]$?
$-1,1,3,5$
$1,1,3,5$
$-5,1,3,5$
$5,1,3,5$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$-5,1,3,5$
13)True or False : Given \bar{x} is an eigenvector corresponding to the eigenvalue λ of the matrix \mathbf{A}. Then the eigenvalue and eigenvector of \mathbf{A}^{3} is λ^{3} and $3 \bar{x}$.TrueFalse
No, the answer is incorrect.
Score: 0
Accepted Answers:
False
14)-et x and y be two positive numbers. What is the probability that $2 x+6 y$ is even?

2 points
0.5
0.75

No, the answer is incorrect.
Score: 0
Accepted Answers:
1
15)_et A and B be two matrices of size $n \times n$ such that $\operatorname{det}(A B)=0$ and $\operatorname{det}(A) \neq 0$, then
all the eigenvalues of B must be zero.
none of the eigenvalues of B must be zero.
at least one of the eigenvalues of B must be zero.
B should be a zero matrix.

No, the answer is incorrect.
Score: 0

Accepted Answers:

at least one of the eigenvalues of B must be zero.
16)f A is a real square matrix, then $A A^{\mathrm{T}}$ is

2 pointsasymmetricsometimes symmetricalways symmetricskew-symmetric
No, the answer is incorrect.
Score: 0
Accepted Answers:
always symmetric
170ut of 6 positive and 8 negative numbers, four numbers are chosen and multiplied. What 2 poinve is the probability that the product is a negative number?101/1001505/1001500/1001496/1001
No, the answer is incorrect.
Score: 0
Accepted Answers:
496/1001
18From a shuffled pack of 52 cards, 13 cards are dealt. What is the probability that it contains exactly one king, given that it contains exactly two jacks? Give your answer to two decimal places.

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Range) 0.43,0.45

19_et $S=\{u, v, w\}$ be a linearly independent set. For what value(s) of k is the set $S_{1}=\{v-u, k w-v, u-w\}$ also linearly independent?

No, the answer is incorrect.
Score: 0
Accepted Answers:
$k \neq 1$
$k=0$
20)_et $A \in \mathbb{C}^{n \times n}$. If $A^{2}=A$, what are the eigenvalues of A ?0 and 1 only
1 only0,1 and -1 onlynot possible to determine from given data

No, the answer is incorrect.
Score: 0
Accepted Answers:
0 and 1 only
21) Which of the following represents the signal with Z transform as $\frac{6 z}{z^{2}-12 z+35}$?

$$
\begin{aligned}
& \left(7^{n}-5^{n}\right) \\
& \mathrm{u}(n-7)-\mathrm{u}(n-5) \\
& 3\left(7^{n}-5^{n}\right) \mathrm{u}(n) \\
& \sin \left(\frac{\pi}{6} n\right) \mathrm{u}(n)
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$3\left(7^{n}-5^{n}\right) \mathrm{u}(n)$
22Consider the finite field \mathbb{F}_{3} that comprises of elements 0,1 and 2 . The field operations are 3 points given in the tables below:

Which of the following vectors in \mathbb{F}_{3}^{3} can be obtained as superposition of $u_{1}=\left[\begin{array}{lll}2 & 1 & 0\end{array}\right]^{\mathrm{T}}$ and $u_{2}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{\mathrm{T}}$?

$$
\begin{aligned}
& u_{3}=\left[\begin{array}{lll}
3 & 1 & 0
\end{array}\right]^{\mathrm{T}} \\
& u_{4}=\left[\begin{array}{lll}
1 & 2 & 0
\end{array}\right]^{\mathrm{T}} \\
& \square \\
& u_{5}=\left[\begin{array}{lll}
2 & 2 & 0
\end{array}\right]^{\mathrm{T}} \\
& \square \\
& u_{6}=\left[\begin{array}{lll}
2 & 1 & 1
\end{array}\right]^{\mathrm{T}}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$u_{4}=\left[\begin{array}{lll}1 & 2 & 0\end{array}\right]^{\mathrm{T}}$
$u_{5}=\left[\begin{array}{lll}2 & 2 & 0\end{array}\right]^{\mathrm{T}}$
23)Which of the following conditions should the variables a, b, c, d, e and f satisfy for the 3 points matrix $A=\left[\begin{array}{ccc}a & b & 0 \\ 0 & 0 & c \\ d & e & f\end{array}\right]$ to be invertible?
$c \neq 0$

$$
\begin{aligned}
& f \neq 0 \\
& \square \\
& a \neq d, \quad b \neq e \text { and } f \neq c \\
& b d \neq a e \\
& \text { No, the answer is incorrect. } \\
& \text { Score: } 0 \\
& \text { Accepted Answers: } \\
& c \neq 0 \\
& b d \neq a e
\end{aligned}
$$

${ }^{\text {24) }}$ Which of the following condition should x satisfy for matrix $B=\left[\begin{array}{lll}3 & 1 & 1 \\ 0 & 1 & x \\ 0 & 1 & 2\end{array}\right]$ to have all eigenvalues to be real?

$$
x=0
$$

$$
x \leq 0
$$

$$
x \geq-0.25
$$

$$
x \geq-10
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$x \geq-0.25$
$x \geq-10$
25) Let $H(\mathrm{z})=\frac{2}{1-0.7 \mathrm{z}^{-1}}+\frac{1}{1-4 \mathrm{z}^{-1}}$ be the impulse response of a LTI system. What is the 3 points ROC of $H(\mathrm{z})$ if the system is causal?

$$
|z|<0.7
$$

$$
|z|>0.7
$$

$|z|<4$
$|z|>4$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$|z|>4$
26)True or False: Upsampler $y(n)=x\left(\frac{n}{L}\right)$ is a LTI system.TrueFalse
No, the answer is incorrect.
Score: 0
Accepted Answers:

False
27)True or False: If atleast one of the eigenvalues of a matrix is zero, then the matrix is not 3 points invertible.TrueFalse
No, the answer is incorrect.
Score: 0
Accepted Answers:
True
28Consider a real skew-symmetric matrix of size $n \times n$ where n is odd. ThenColumns of the matrix are linearly independent.Columns of the matrix are linearly dependent.Matrix is invertible.Matrix is full rank.
No, the answer is incorrect.
Score: 0
Accepted Answers:
Columns of the matrix are linearly dependent.
29)_et $x=[1,2, \ldots, 50]^{\mathrm{T}}$ be a column vector of size 50×1. Then the rank of the matrix $x x^{\mathrm{T}}$ is

No, the answer is incorrect.
Score: 0
Accepted Answers:
1
30,50 people are waiting in a queue to board an airplane. The first person has lost his
boarding ticket and sits on a random seat. The next person takes his/her own seat if it is available, else chooses a random seat. This process continues for the rest of the passengers. What is the probability that the last passenger will be able to sit on his/her original seat?

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\frac{1}{2}$
31)

What is the energy of the signal $g(t)$ whose frequency spectrum is given
by $G(f)=\operatorname{sinc}^{2}(f)+\mathrm{e}^{-j 5 \pi f} \operatorname{sinc}(f)$? Write your answer rounded off to 2 decimal places, without the unit.

Hint

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Range) 1.66,1.68

$\mathcal{Z}(a(n))=A(z), \mathcal{Z}(x(n))=X(z), \mathcal{Z}\left(h_{1}(n)\right)=H_{1}(z)$ and $\mathcal{Z}\left(h_{2}(n)\right)=H_{2}(z)$. Which of the following form a Z transform pair?

$$
\mathrm{u}(n) \text { and } \frac{z}{1-z}
$$

$$
2 \delta(n-1)+3 n \mathrm{u}(n) \text { and } \frac{5 z^{2}+4 z+2}{z(z+1)^{2}}
$$

$a(n) *\left(g_{1} h_{1}(n)+g_{2} h_{2}(n)\right)$ and $g_{1} A(z) H_{1}(z)+g_{2} A(z) H_{2}(z)$
$y(n)=\left\{\begin{array}{ll}x(n / 3) & n \bmod 3=0 \\ 0 & \text { else }\end{array}\right.$ and $\frac{1}{3} X\left(z^{3}\right)$
No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\begin{aligned}
& 2 \delta(n-1)+3 n \mathrm{u}(n) \text { and } \frac{5 z^{2}+4 z+2}{z(z+1)^{2}} \\
& a(n) *\left(g_{1} h_{1}(n)+g_{2} h_{2}(n)\right) \text { and } g_{1} A(z) H_{1}(z)+g_{2} A(z) H_{2}(z)
\end{aligned}
$$

Previous Page

