Course

Х

Announcements

Courses » Design for internet of things

reviewer1@nptel.iitm.ac.in v

Mentor

Ask a Question Progress **Unit 6 - Battery less** power supply and battery life calculation for embedded devices

Course outline

How to access the portal

Introduction to IOTs - Improving **Quality of Life**

System Design and Overview of Power Supply Section

Designing with LDO's, Switching **Regulators and Case Studies**

Power Conditioning with Energy Harvesters

Battery less power supply and battery life calculation for embedded devices

 Battery less power supply and battery life calculation for embedded devices - I

 Battery less power supply and battery life calculation for embedded devices - II

 Battery less power supply and battery life calculation for

Week5 Assessment

The due date for submitting this assignment has passed. Due on 2017-08-30, 23:59 IST.

Submitted assignment

1) For a battery what is the meaning of actual capacity and nominal capacity ?

1 point

1 point

1 point

1 point

- Nominal capacity is the discharge from the battery. Actual capacity is as specified in datasheet.
- Actual capacity is the discharge from the battery. Nominal capacity is as specified in datasheet.
- Both are equal and as specified in datasheet
- Both are equal and as measured when battery is used

No, the answer is incorrect. Score: 0

Accepted Answers:

Actual capacity is the discharge from the battery. Nominal capacity is as specified in datasheet.

- 2) LORA ,SIGFOX, NB-IOT and LTE-M are types of
 - Wireless technologies
 - Wired technologies
 - Low power wide area networks
 - High power wide area networks

No, the answer is incorrect.

Accepted Answers: Low power wide area networks

- 3) The minimum lifespan of a battery driven IoT device should be:
 - ~5 weeks

Score: 0

- ~ 10 years
- Few days
- Few hours

No, the answer is incorrect.

Accepted Answers:

~ 10 years

Score: 0

- 4) Gateway devices will be generally powered with
 - Harvested energy
 - Battery

25/07/2018 Design for internet of things - - Unit 6 - Battery less power supply and battery life calculation for embedded devices

/2010 Design for in	ternet of things onit o - battery less power supply and battery me calculation for embedde	u uevices
embedded devices - III	 Large size batteries or even grid power Potential energy 	
Quiz : Week5 Assessment	No, the answer is incorrect.	
 Solutions for Assessment 5 	Score: 0 Accepted Answers:	
IoT Protocols	5) When the battery powered device is in sleep mode	1 point
IoT LAN and WAN Connectivities	 The capacity of the battery decreases The capacity of the battery increases The capacity of the battery has no change 	_ p =
IoT Case Studies	 The battery discharges completely 	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: The capacity of the battery increases	
	6) To avoid a current consumption of spiky nature directly from the battery, it is advisable to:	1 point
	 Add an inductor at the output of the battery Add a capacitor at the output of the battery Add a resistor at the output of the battery 	
	 Any of the above. No, the answer is incorrect. 	
	Score: 0 Accepted Answers: Add a capacitor at the output of the battery	
	7) Low duty cycle in a battery powered device means	1 point
	 Very long battery life Very high efficiency of the battery Significant self discharge will occur The device is predominantly in sleep mode 	
	No, the answer is incorrect.	
	Accepted Answers: Significant self discharge will occur The device is predominantly in sleep mode	
	8) Dickson charge pump is a	1 point
	 Voltage doubler Power doubler Energy boosting circuit All of the above. 	
	No, the answer is incorrect.	
	Accepted Answers: Voltage doubler	
	9) In the vibration harvesting scenario, the power output is high when	1 point
	 The 'g' value is 0. The 'g' value is 1. The 'g' value is as high as possible The 'g' value is low 	

Design for internet of things - - Unit 6 - Battery less power supply and battery life calculation for embedded devices No, the answer is incorrect. Score: 0 Accepted Answers: The 'g' value is as high as possible 10)To efficiently harvest from vibration, which of the following is/are a critical factor? 1 point Clamping the harvester Tip mass Placement of the harvester All of the above. No, the answer is incorrect. Score: 0 **Accepted Answers:** All of the above. 11)What is the importance of tip mass? 1 point To tune the beam to resonance To diverge the beam away from resonance Decrease the 'g' value Decrease the sensitivity. No, the answer is incorrect. Score: 0 **Accepted Answers:** To tune the beam to resonance 12)What is the drawback of using a tip mass on a vibration harvester? 1 point Reduces the sensitivity Reduces the ability of extract over a range of frequencies. Increases the weight of the vibrating device None of the above. No, the answer is incorrect. Score: 0 **Accepted Answers:** Reduces the ability of extract over a range of frequencies. 13) Using the vibration harvester, with the tip mass, the voltage generated on the oscilloscope 1 point was: 25V dc 10V dc 0.1V dc 40V dc No, the answer is incorrect. Score: 0 **Accepted Answers:** 10V dc **Previous Page** End

