Due on 2021-09-08, 23:59 IST.

Week 6: Assignment 2

The due date for submitting this assignment has passed.

As per our records you have not submitted this assignment.

Mechanical Assignment

To stop swelling, retention plates are required in:

1 point

a) Cylindrical Cell

Only a

b) Prismatic cell

- Only c Both b and c
- All a, b, and c

No, the answer is incorrect. Score: 0

Accepted Answers: Both b and c

For the below battery pack, End plates and Side strips are required to be designed. Material selected for this purpose is Aluminum 6061 T6.

c) Pouch cell

Aluminum 6061 T6	Young's Modulus - 68900 Mpa	Yield strength - 290Mpa

Picture 1

The dimensions of Endplate are 138mmx128mmx2mm. Pressure applied (q) on it is 0.1N/mm² and boundary conditions are as defined in the picture 2. Calculate the stress generated at (x = 0, z = b) of End plate in Mpa.

Rectangular plate; three edges fixed, one edge (a) free	10a. Uniform over entire plate	$\begin{split} &(\text{At } x=0,z=0) (\sigma_b)_{\max} = \frac{-\beta_1 q b^2}{t^2} \text{and} R=\gamma_1 q b \\ &(\text{At } x=0,z=b) \sigma_a = \frac{\beta_2 q b^2}{t^2} \\ &\left(\text{At } x=\pm\frac{a}{2},z=b\right) \sigma_a = \frac{-\beta_3 q b^2}{t^2} \text{and} R=\gamma_2 q b \end{split}$								
A DE X		a/b	0.25	0.50	0.75	1.0	1.5	2.0	3.0	
		β_1	0.020	0.081	0.173	0.321	0.727	1.226	2.105	
		β_2	0.016	0.066	0.148	0.259	0.484	0.605	0.519	
		β_3	0.031	0.126	0.286	0.511	1.073	1.568	1.982	
		71	0.114	0.230	0.341	0.457	0.673	0.845	1.012	
		72	0.125	0.248	0.371	0.510	0.859	1.212	1.627	

Mpa Stress generated is .

No, the answer is incorrect. Score: 0

Accepted Answers: (Type: Range) 100,130

1 point

3) 4 Battery packs of mass 10Kg, 15Kg, 20kg and 25kg, having overall stiffness of 12.5N/m, 18N/m, 15N/m and 40N/m respectively. The pack with 1 point least natural frequency is:

Natural frequency, $\omega =$

- Pack 1
- Pack 2

Rectangular plate; three edges fixed, one edge (a) free	10a. Uniform over entire plate	$\begin{split} &(\text{At }x=0,z=0) (\sigma_b)_{\max} = \frac{-\beta_1 q b^2}{t^2} \text{and} R=\gamma_1 q b \\ &(\text{At }x=0,z=b) \sigma_a = \frac{\beta_2 q b^2}{t^2} \\ &\left(\text{At }x=\pm\frac{a}{2},z=b\right) \sigma_a = \frac{-\beta_3 q b^2}{t^2} \text{and} R=\gamma_2 q b \end{split}$							
1 b)		a/b	0.25	0.50	0.75	1.0	1.5	2.0	3.0
		β_1	0.020	0.081	0.173	0.321	0.727	1.226	2.105
		β_1 β_2 β_3	0.016	0.066	0.148	0.259	0.484	0.605	0.519
		β_3	0.031	0.126	0.286	0.511	1.073	1.568	1.982
		71	0.114	0.230	0.341	0.457	0.673	0.845	1.012
		72	0.125	0.248	0.371	0.510	0.859	1.212	1.627

- Stress generated is _ _ Mpa
- No, the answer is incorrect.

Course outline

How does an NPTEL online course work?

Module 1 - Overview of Electric Vehicles in India

Module 2 - Vehicle Dynamics

Module 2 and 3 - Vehicle Dynamics and EV Subsystems

Module 4 - Storage for EVs

Module 4 - Storage for EVs (contd)

Module 5 - Fundamentals of

- battery pack design Lecture 34 - Fundamentals of
- battery pack design Lecture 35 - Electrical Design
- of Battery Pack Part 1 Lecture 36 - Electrical Design
- of Battery Pack Part 2 Lecture 37 - Electrical Design

of Battery Pack - Part 3

- Lecture 38 Mechanical Design of Battery Pack - Part
- Lecture 39 Mechanical Design of Battery Pack - Part
- Lecture 40 Mechanical Design of Battery Pack - Part
- Lecture 41 Mechanical Design of Battery Pack - Part
- Lecture 42 Thermal Design of Battery Pack - Part 1
- Lecture 43 Thermal Design of Battery Pack - Part 2
- Lecture 44 Thermal Design of Battery Pack - Part 3
- Lecture 45 Thermal Design of Battery Pack - Part 4
- Quiz: Week 6: Assignment 1
- Quiz: Week 6: Assignment 2
- Quiz: Week 6: Assignment 3
- Week 6 Lecture notes
- Week 6 Feedback form: Electric Vehicles and Renewable Energy
- Quiz: Week 2: Assignment 2 Alternate
- Week 6: Solutions
- Week 2: Assignment 2 alternate solutions

Module 5 and 6 - Battery Pack Design, Motors and Controllers

Module 6 - EV Motors and Controllers

Module 7&8 - Battery Charging and Swapping, Analytics

Module 9: Renewable Energy

- Introduction
- Quiz: Week 6: Assignment 1
- Quiz: Week 6: Assignment 2 Quiz: Week 6: Assignment 3
- Week 6 Lecture notes
- Week 6 Feedback form: Electric Vehicles and Renewable Energy
- Quiz: Week 2: Assignment 2 Alternate
- Week 2: Assignment 2 alternate solutions

Week 6: Solutions

Module 5 and 6 - Battery Pack Design, Motors and