Course outline

course work?

(contd)

How does an NPTEL online

Module 2 - Vehicle Dynamics

Lecture 31 - Computation of

Week 5 - Feedback form: Electric Vehicles and

Module 5 - Fundamentals of

Charging and Swapping,

Module 11: Renewable

DOWNLOAD VIDEOS

Energy

Energy

Live Session

Renewable Energy

Week 5: Solutions

Module 1 - Overview of Electric Vehicles in India

NPTEL » Electric Vehicles and Renewable Energy

Due on 2021-09-01, 23:59 IST.

0.5 points

0.5 points

0.5 points

0.5 points

0.5 points

0.5 points

The due date for submitting this assignment has passed.

Week 5: Assignment 2

As per our records you have not submitted this assignment.

1) Which of the below will be the best configuration for the battery?

Q1. We need a 15 kWh battery with nominal voltage at 350V. The cells that we have with us is 3.65V, 14 Ah Li Ion cells, which have voltage of 2.75V at 0% SoC and 4.2V at 100% SoC.

Module 2 and 3 - Vehicle 3S96P Dynamics and EV 3P96S Subsystems 96P3S Module 4 - Storage for EVs 96S3P No, the answer is incorrect. Module 4 - Storage for EVs

Accepted Answers: 3P96S Lecture 27 - SoH and SoC estimation and Self Discharge 2) What will be the battery voltage when its SoC is 100%? - Part 1

Score: 0

 Lecture 28 - SoH and SoC estimation and Self Discharge No, the answer is incorrect. - Part 2 Score: 0

Accepted Answers: Lecture 29 - Battery Pack (Type: Range) 400,415 Development - Part 1 Lecture 30 - Battery Pack Development - Part 2 3) What will be the battery voltage when its SoC is 0%?

Effective cost of battery - Part No, the answer is incorrect. Score: 0 Lecture 32 - Computation of Accepted Answers: Effective cost of battery - Part (Type: Range) 240,288 Lecture 33 - Charging

No, the answer is incorrect.

Score: 0

Batteries Q2. We need to build a 0.5 kWh battery at 48V (using minimum number of 3.65V Li Ion cells). Quiz: Week 5: Assignment 1 4) What capacity (Ah) cells will we use? Quiz: Week 5: Assignment 2 Quiz: Week 5: Assignment 3 No, the answer is incorrect. Quiz: Week 5: Assignment 4 Week 5 - Lecture notes Accepted Answers: (Type: Range) 9.7,11

5) If the configuration is given by nPmS then n =

battery pack design Score: 0 Accepted Answers: Module 5 and 6 - Battery (Type: Numeric) 1 Pack Design, Motors and 0.5 points Controllers 6) If the configuration is given by nPmS then m = Module 6 - EV Motors and Controllers No, the answer is incorrect. Module 7&8 - Battery

Accepted Answers: Analytics (Type: Range) 13,14 Module 9: Renewable Energy 0.5 points - Introduction Q3. A battery pack of 375V, 200Ah is to be made to power a luxury car. One battery pack is made with 3.65V, 4Ah, 21700 Cylindrical cells and another Module 10: Renewable pack uses 3.65V, 50Ah prismatic cells. Energy - Solar and Wind a. Suggest nPmS configuration for each case to achieve the pack requirements, and find the total number of cells used in both cases.

> Form Factor Total number of cells used 21700 $[n_1]$ $[m_1]$ [TC,] Cylindrical cells Prismatic cells $[n_2]$ [TC₂] $[m_2]$

capacity (Ah) for both the packs. You can answer this question by computing the values in the below table. Form Factor Resultant Resultant

b. A cell in a module of n parallel cells fails in open during operation. Find the resultant nominal pack voltage in V, pack

	Nominal pack Voltage (V)	Nominal pack Capacity (Ah)
217 Cylind cel	rical [NPV ₁]	[NPC ₁]
Prismat	ic cells [NPV ₂]	[NPC ₂]

No, the answer is incorrect. Score: 0 Accepted Answers: (Type: Numeric) 50

No, the answer is incorrect.

No, the answer is incorrect.

Accepted Answers: (Type: Range) 404,416

(Type: Range) 360,385

No, the answer is incorrect.

Accepted Answers: (Type: Numeric) 150

(Type: Numeric) 80

Accepted Answers: (Type: Range) 1.3,1.4

(Type: Range) 0.9,1.2

Accepted Answers:

Score: 0

Score: 0

You can answer this question by computing the values in the below table:

m₁ is

No, the answer is incorrect. Score: 0 Accepted Answers: (Type: Range) 102,103 0.5 points TC₁ is

No, the answer is incorrect. Score: 0 Accepted Answers: (Type: Range) 5050,5200 0.5 points 10) n2is

No, the answer is incorrect. Score: 0 Accepted Answers: (Type: Numeric) 4 0.5 points 11) m2is

Score: 0 Accepted Answers: (Type: Range) 102,103 0.5 points 12) TC2is

0.5 points 13) NPV_1is No, the answer is incorrect. Score: 0 Accepted Answers:

0.5 points 14) NPC1 is No, the answer is incorrect. Score: 0 Accepted Answers: (Type: Numeric) 196 0.5 points 15) NPV2is

No, the answer is incorrect. Score: 0 Accepted Answers: (Type: Range) 360,385 0.5 points 16) NPC₂ is

Q4. A Battery pack of configuration 2P14S is made with 3.65V, 13Ah Li Ion cells to power a two wheeler. The pack is used in field for some time and has undergone 5% degradation. The pack operation is limited from 10% SoC to 90% SoC level to improve life. 17) Indicate the SoH (%) of this battery pack

No, the answer is incorrect. Score: 0 Accepted Answers: (Type: Numeric) 95 0.5 points 18) What is DoD (%) of operation? No, the answer is incorrect. Score: 0 Accepted Answers:

0.5 points 19) What is the nominal voltage (V) of the pack? (Correct upto 1 decimal place) No, the answer is incorrect. Score: 0 Accepted Answers: (Type: Range) 51,51.2

0.5 points 20) What is the nominal capacity in kWh? (Correct upto 2 decimal places) No, the answer is incorrect. Score: 0

0.5 points 21) What is the usable capacity (kWh) of the battery pack at current level of SoH? (Correct upto 1 decimal place) No, the answer is incorrect. Score: 0 Accepted Answers:

0.5 points Q5. State True or False 22) Packs made with cylindrical cells need right pressure to be applied on cells to avoid bulging. 0.5 points O True False

No, the answer is incorrect. Score: 0 Accepted Answers: False 23) nPmS configuration implies first make series of m cells and then attach n such series in parallel. 0.5 points ○ True False

No, the answer is incorrect. Score: 0 Accepted Answers: 24) In a module of 4 parallel cells of 3.65V, 4Ah each, one cell fails in open. The resultant capacity of module is then 0.5 points reduced to 12Ah.

O True False No, the answer is incorrect. Score: 0 Accepted Answers:

25) SoH of a battery pack is the SoH of the strongest cell in the pack. 0.5 points True False No, the answer is incorrect. Score: 0 Accepted Answers: False Accepted Allowers. False 23) nPmS configuration implies first make series of m cells and then attach n such series in parallel. 0.5 points

O True False No, the answer is incorrect. Score: 0

reduced to 12Ah. O True

24) In a module of 4 parallel cells of 3.65V, 4Ah each, one cell fails in open. The resultant capacity of module is then 0.5 points