NPTEL » Electric Vehicles and Renewable Energy Course outline How does an NPTEL online course work? Module 1 - Overview of Electric Vehicles in India Module 2 - Vehicle Dynamics Announcement on Week 2 Lecture 10 - Forces acting when a vehicle move Lecture 11 - Aerodynamic drag, Rolling Resistance and Uphill Resistance Lecture 12 - Power and Torque to accelerate Lecture 13 - Putting it all together - 1 Lecture 14 - Putting it all together - 2 Lecture 15 - Concept of Drive Cycle - 1 Lecture 16 - Concept of Drive Cycle - 2 Week 2 Slide Content Week 2 Feedback Form: Electric Vehicles and Renewable Energy Quiz: Week 2: Assignment 1 Quiz: Week 2: Assignment 2 Quiz: Week 2: Assignment 3 Quiz: Week 2: Assignment 4 Quiz: Week 2: Assignment 5 Week 2: Solutions Module 2 and 3 - Vehicle Dynamics and EV Subsystems Module 4 - Storage for EVs Module 4 - Storage for EVs (contd) Module 5 - Fundamentals of battery pack design Module 5 and 6 - Battery Pack Design, Motors and Controllers Module 6 - EV Motors and Controllers Module 7&8 - Battery Charging and Swapping, Analytics Module 9: Renewable Energy - Introduction

Week 2: Assignment 1

The due date for submitting this assignment has passed.

As per our records you have not submitted this assignment.

Due on 2021-08-18, 23:59 IST.

Q 2.1 Compute Forces due to drag, rolling resistance and gradient for the following vehicles assuming $\rho = 1.2$ (kg/m³) and $\theta = 8^{\circ}$. For the three vehicles given in the table 1, find Aerodynamic drag at velocity V1 and V2; also find rolling resistance at two velocities.

T	al	bl	e	1
		-		-

Vehicle	GVW (kg)	CD	Area (m²)	μ	V ₁ (km/h)	V ₂ (km/h)	Tyre Radius
2-wheeler	200	0.9	0.6	0.015	30	80	0.28
3-wheeler	600	0.45	1.6	0.015	30	80	0.2
4-wheeler	1500	0.3	2.5	0.015	30	80	0.3

If,

AVi -> Aerodynamic drag force at velocity Vi

 $RV_i \rightarrow Rolling resistance force at velocity V_i$

GF -> Gradient force

For the three vehicles given in Table 1, find the missing values in Table 2 (Correct up to 2 decimal places):

Table 2

Vehicle	AV ₁	AV ₂	RV ₁	RV ₂	GF
	(N)	(N)	(N)	(N)	(N)
2-wheeler	25	160	29.4	29.4	273
3-wheeler	[AV ₁ 3w]	[AV ₂ 3w]	[RV ₁ 3w]	[RV ₂ 3w]	[GF ^{3w}]
4-wheeler	[AV ₁ ^{4w}]	[AV ₂ ^{4w}]	[RV ₁ 4w]	[RV ₂ ^{4w}]	[GF4w]

1) $[AV_1^{3w}]$

No, the answer is incorrect.

Score: 0 Accepted Answers:

2) $[AV_2^{3w}]$

Accepted Answers: (Type: Range) 211,214

Module 10: Renewable Energy - Solar and Wind

Module 11: Renewable

Live Session

Energy

Energy

DOWNLOAD VIDEOS

(Type: Range) 29,31

No, the answer is incorrect. Score: 0

3) $[RV_1^{3w}]$

No, the answer is incorrect.

Score: 0 Accepted Answers:

(Type: Range) 87,89

4) $[RV_2^{3w}]$

No, the answer is incorrect. Score: 0

Accepted Answers: (Type: Range) 87,89

5) $[GF^{3w}]$

No, the answer is incorrect. Score: 0

Accepted Answers: (Type: Range) 815,820

6) $[AV_1^{4w}]$

No, the answer is incorrect. Score: 0

Accepted Answers: (Type: Range) 31,32

7) $[AV_2^{4w}]$

No, the answer is incorrect. Score: 0

Accepted Answers: (Type: Range) 222,223

8) $[RV_1^{4w}]$

No, the answer is incorrect. Score: 0

Accepted Answers: (Type: Range) 218,221

9) $[RV_2^{4w}]$

No, the answer is incorrect. Score: 0 Accepted Answers:

10) $[GV^{4w}]$ Accepted Answers:

(Type: Range) 31,32

(Type: Range) 218,221

7) $[AV_2^{4w}]$

No, the answer is incorrect. Score: 0

Accepted Answers: (Type: Range) 222,223 0.5 points

0.5 points