1 point

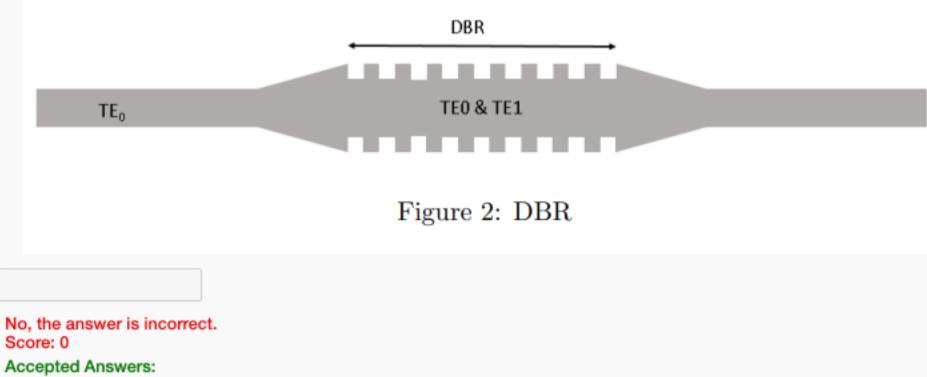
1 point

Integrated Photonics Devices

and Circuits

Week 10

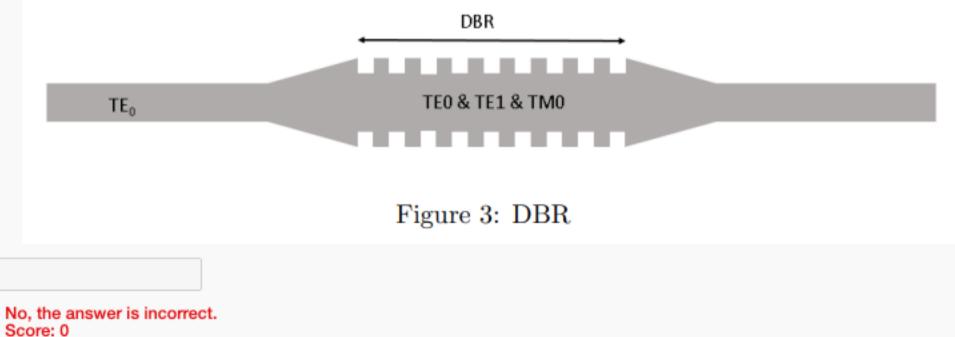
Week 11


Week 12

Download Videos

Week 9 :Lecture notes

The due date for Submitting this assign	ment has passed.	0.00.00.50.107
As per our records you have not submit		9-29, 23:59 IST.
The mode confinement principle in a	a photonic crystal waveguide is same as that of conventional strip/ridge waveguides.	1 point
○ True		
○ False		
No, the answer is incorrect.		
Score: 0 Accepted Answers: False		
2) The number of longitudinal modes in	n a Fabry-Perot cavity can be reduced with the help of mirror with narrowaband reflectivity.	1 point
○ True		
○ False		
No, the answer is incorrect. Score: 0		
Accepted Answers: True		
3) DBR mirrors can be used to design	a laser oscillating with single longitudinal mode.	1 point
○ True		
○ False		
No, the answer is incorrect. Score: 0		
Accepted Answers: True		
mode waveguides (supporting $TE_0 \ mode$	fined only in one side wall of a multimode waveguide (supporting TE_0 & $TE_1 modes$) and the ir e) are adiabatically connected as shown in figure from single mode waveguide. If the TE_0 mode at how many stop band will appear at the output? Assume only 1st order grating diffraction.	
	DBR	
TE ₀	TEO & TE1	


5) A distributed grating structure is defined in both side walls of a multimode waveguide (supporting TE0 & TE1 modes) and the input/output singlemode waveguides (supporting $TE_0 \ mode$) are adiabatically connected as shown in figure from single mode waveguide. If the TE_0 mode is launched into the single mode waveguide, then at the output how many stop band will appear at the output? Assume only 1st order grating diffraction.

(Type: Numeric) 1

Accepted Answers: (Type: Numeric) 2

6) A distributed grating structure is defined in both side walls of a multimode waveguide (supporting TE_0 , TE_1 & TM_0 modes) and the input/output single-mode waveguides (supporting $TE_0 \ mode$) are adiabatically connected as shown in figure from single mode waveguide. If the $TE_0 \ mode$ is launched into the single mode waveguide, then at the output how many stop band will appear at the output? Assume only 1st order grating diffraction.

Score: 0

Accepted Answers:

(Type: Numeric) 1

1 point

Common data for questions 7 – 8:

A DBR is designed with a single mode SOI waveguide whose dispersion characteristics is given by $n_{eff}=p_1\lambda^2+p_2\lambda+p_3$, where $p_1 = -1.13 \times 10^{11} [1/m^2]$, $p_2 = -3.557 \times 10^5 [1/m]$, and $p_3 = 3.509$, over a broad operating range around 1550 nm. Consider the period of the DBR is 290 nm.

What is the Bragg wavelength of the DBR in nm? (in 2 decimal points) __

No, the answer is incorrect. Score: 0

Accepted Answers:

(Type: Range) 1555,1556

1 point

8) If the κ is calculated as 0.01 [1/ μ m], the length of the DBR such that the field amplitude of the transmitted light at Bragg wavelength is reduced by e^{-5} factor is _____ µm.

No, the answer is incorrect. Score: 0

Accepted Answers:

(Type: Range) 499,501

1 point

1 point

The output power of an MZI will be effected by the same fabrication error introduced in both the arm. O True

No, the answer is incorrect. Score: 0

Accepted Answers: False

False