Course outline How does an NPTEL online course work? Week 0 MATLAB Week 1 Week 2 Week 3 Week 4 Week 5 Optical Waveguides: Theory and Design: Dispersion and Polarization of Guided Modes Optical Waveguides: Theory and Design: Orthogonality of Guided Modes Optical Waveguides: Theory and Design: Coupled Mode Theory of Guided Modes Optical Waveguides: Theory and Design: Coupled Mode

Theory Contd..

and Circuits

Week 6

Week 7

Week 8

Week 9

Week 10

Week 11

Week 12

Download Videos

Week 5: Lecture notes

Week 5 Feedback Form:

Quiz: Week 5: Assignment 5

Integrated Photonics Devices

Week 5: Assignment 5

The due date for submitting this assignment has passed.

Due on 2021-09-01, 23:59 IST.

As per our records you have not submitted this assignment.

1) In a uniform single mode waveguide, the forward propagating mode and the backward propagating mode can be coupled.

True

No, the answer is incorrect.

Score: 0

False

Accepted Answers: False

Any sort of abrupt perturbation can break the orthogonality condition between guided modes.

1 point

1 point

True

False

No, the answer is incorrect. Score: 0

Accepted Answers: True

In a weakly perturbed waveguide, the power exchange among guided modes can be approximately estimated by coupled mode theory.

1 point

True False

No, the answer is incorrect. Score: 0

Accepted Answers:

True

In a multimode waveguide, it is not possible to excite only the fundamental mode.

1 point

True

False

No, the answer is incorrect.

Accepted Answers:

False

5) A guided TE mode is not orthogonal to any of the guided TM mode supported by a waveguide.

1 point

True

False

No, the answer is incorrect.

Score: 0

Accepted Answers:

False

A well defined perturbation in a waveguide can result into a desired integrated optical function.

1 point

True False

No, the answer is incorrect. Score: 0

Accepted Answers:

True

7) Consider a 220 nm SOI waveguide with a width W=500 nm as shown in Fig. 1(a). The distribution of the dominant electric field of the fundamental mode along y = 0 plane is given by

$$E(x) = \begin{cases} a \sin(bx + c); & \text{in the core region} \\ a_1 e^{-b_1 x}; & \text{in the cladding region} \end{cases}$$
where $a = 1$ [V/m], $b = 5.84 \times 10^6$ [1/m], $c = \pi/2$, $a_1 = 2.23$ [V/m], $b_1 = 6.32 \times 10^6$ [1/m].

where a = 1 [V/m], $b = 5.84 \times 10^6$ [1/m], $c = \pi/2$, $a_1 = 2.23$ [V/m], $b_1 = 6.32 \times 10^6$ [1/m].

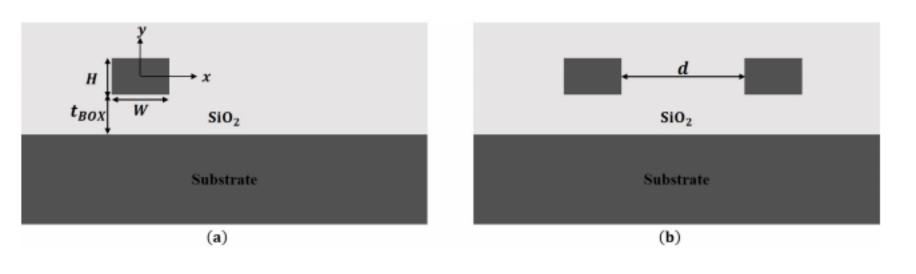


Figure 1: Cross-sectional view of (a) a 2—D SOI waveguide, (b) two closely placed SOI waveguides.

A second identical waveguide is to be placed at a distance d from the first waveguide, as shown in Fig. 1(b). What would be the minimum value of d such that the field amplitude is reduced by 99% (from origin) at the left edge of second waveguide core? _____ µm.

No, the answer is incorrect.

Score: 0

Accepted Answers: (Type: Range) 0.59,0.62