reviewer6@nptel.iitm.ac.in $~$
NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Basic Electrical Circuits (course)

Unit 3 - Week 1: Preliminaries; Current and voltage; Electrical elements and circuits; Kirchhoff's laws; Basic elements; Linearity

Week 3: Power and energy in electrical elements; Circuit analysis methods

Week 4: Nodal analysis
Week 5 : Mesh analysis; Circuit theorems

Week 6: More circuit theorems; Two port parameters

Week 7: Two port parameters continued; Reciprocity in resistive networks

Week 8: Opamp and negative feedback; Example circuits and additional topics

Week 9 :First Order Circuits

Week 10 : First order circuits with time-varying inputs

Week 11: Second order system response

Week 12: Direct calculation of steady state response from equivalent components

Text Transcripts

Download Videos
3)

A resistor's $\boldsymbol{I}-\boldsymbol{V}$ characteristics are shown in the figure above. Determine its resistance.
(The answer must be in kilohms ($\boldsymbol{k} \boldsymbol{\Omega}$). Round off fractional answers to two decimal places.)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) 30
4)

In the figure above, determine the voltage v_{1} at $\mathrm{t}=3 \mu \mathrm{~s}$. (The waveform consists of straight line segments)
(The answer must be in volts (V). Round off fractional answers to one decimal place.)

No, the answer is incorrect.
Score: 0
Accepted Answers
(Type: Numeric) -5
5)

In the figure above, determine the voltage v_{c} at $t=6 \mu s$. The capacitor is initially discharged (i.e. the capacitor voltage is zero at $t=0$). (The waveform consists
of straight line segments)
(The answer must be in millivolts (mV). Round off fractional answers to one decimal place.)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) 700

In the figure above, determine the voltage v_{2} at $t=4 \mu s$. (The waveform consists of straight line segments)
(The answer must be in volts (V). Round off fractional answers to one decimal place.)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) -64
7)

In the figure above, determine the current i_{1} at $t=5 \mu s$. The inductor current is zero at $t=0$.
(The waveform consists of straight line segments)
(The answer must be in milliamperes (mA). Round off fractional answers to one decimal place.)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) -7.5
8)

In the figure below, determine the voltage v_{1} at $t=5 \mathrm{~ms}$. The capacitor voltage and inductor current are zero at $t=0$.
(The waveform consists of straight line segments)
(The answer must be in volts (V). Round off fractional answers to one decimal place.)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) 1.5
9)

$$
\text { In the figure below, determine the voltage } v_{1} \text { at } t=5 \mathrm{~ms} \text {. The capacitor voltage is zero at } t=0 \text {. }
$$

(The waveform consists of straight line segments)
(The answer must be in volts (V). Round off fractional answers to one decimal place.)

No, the answer is incorrect.
Score: 0
Accepted Answers
(Type: Numeric) 3
1 poin
10)

In the figure above, $i_{1}=5 \mathrm{~mA} \sin \left(2 \pi \times 10^{3} t\right)$. Determine v_{1} at $t=1.5 \mathrm{~ms}$. The capacitor voltage is zero at $t=0$.
(The answer must be in volts (V). Round off fractional answers to one decimal place.)

No, the answer is incorrect. Score: 0
Accepted Answers:
(Type: Numeric) 1.6

