Progress

NPTEL » Mapping Signal Processing Algorithms to Architectures

Unit 5 - Week 3

Course outline	Assignment 3
low to access the portal	The due date for submitting this assignment has passed. Due on 2019-0
re-Requisite Assignment	As per our records you have not submitted this assignment.
/eek 1	For the diagram shown, assume input is $x(n)$ and output is $y(n)$. Also assume that each node A , B , C , D are functional units (adders and rindicated), and that the rectangular blocks are registers.
eek 2	
eek 3	
Constraint analysis for IPB computation	
Motivational examples for IPB	
General IPB computation	Indicate all the cycles in the graph that you need to consider to compute the iteration period bound
ample period calculation	□ A-B-A
rallel architecture	A-B-D-C-A
d-even register reuse	□ A-B-C-D-A □ B-D-B
ver consumption	□ D-A-B
elining	No, the answer is incorrect.
elining FIR filter	Score: 0 Feedback:
e-invariant systems	Solution: A-B-A, A-B-C-D-A and D-A-B are not valid cycles in the graph
d pipelining examples	Accepted Answers: A-B-D-C-A
forward cutsets	B-D-B
ced pipeline	2) What is the iteration period bound (in ns) for this system, assuming that delay through an adder is 1ns and through a multiplier is 2ns?
ng basic concept	
le and uses of retiming	No, the answer is incorrect.
Assignment 3	Score: 0
Feedback : Mapping Processing Algorithms ectures	Accepted Answers: (Type: Numeric) 3
	For the figure below, the nodes A, B, C are performing some computations (ignore the type of computation) and the edges marked with D respectively 1 and 2 registers or delay elements on them, as discussed in the context of dataflow graphs.
5	The dashed lines indicate "cutsets": for example $X1-X1$ is a cutset that includes the edges $A-B$, $C-A$ and $B-A$, while $X2-X2$ includes $A-B$
6	Answer the following questions:
,	X1 \
	A 2D X2 B X3 C
1	
2	
OAD VIDEOS	X1 X2
essions	3) Which of the cutsets is a valid cutset for retiming:
	□ X1 – X1 □ X2 – X2 □ X3 – X3
	No, the answer is incorrect. Score: 0 Feedback: Solution: A valid cutset for retiming must be a complete cutset: removing the edges should completely separate the graph into two disjoint parts. X2 does not satisfy this Accepted Answers: X1 - X1 X3 - X3
	For each cutset, indicate whether it is a valid <i>feedforward</i> cutset that can be used for pipelining the graph 4) X1 – X1 ?

9-08-21, 23:59 IST.

and multipliers as

2 points

1 point

th D and 2D have

des A - B and B - A only

2 points

Valid Invalid

No, the answer is incorrect.

Score: 0 Accepted Answers:

5) X2 - X2 ?

Invalid

1 point

1 point

Valid

Invalid

Score: 0 Accepted Answers:

No, the answer is incorrect.

Invalid

6) X3 - X3 ? 1 point

Valid

Invalid

No, the answer is incorrect. Score: 0

Accepted Answers: Invalid

7) After retiming on cutset X1 - X1, what will be the number of registers on edge C - A?

No, the answer is incorrect. Score: 0 Accepted Answers:

(Type: Numeric) 1

1 point

8) After retiming on cutset X1 - X1, what will be the number of registers on edge A - B?

Score: 0 Accepted Answers:

No, the answer is incorrect.

(Type: Numeric) 1

1 point