Progress

Course outline

Week 1 Lectures

Week 2 Lectures

Week 3 Lectures

Week 4 Lectures

Week 5 Lectures

fibers

fibers

approach

Linearly polarized modes

Attenuation and power loss in

Introduction to dispersion in

 Mathematical modelling of dispersion: Transfer function

Pulse propagation equation and its solution: Propagation of Gaussian pulses in fiber

Quiz: Assignment-5

Assignment-5 Solutions

Week-5 Feedback

Week 6 Lectures

Week 7 Lectures

Week 8 Lectures

Week 9 Lectures

Week 10 Lectures

Week 11 Lectures

Week 12 Lectures

Accepted Answers:

 $\frac{T_0}{[T_0^2 - j\beta_2 L(1+jC)]^{1/2}} exp \left(-\frac{(1+jC)T^2}{2[T_0^2 - j\beta_2 L(1+jC)]} \right)$

 $\frac{\pi T_0}{[T_0^2 - j\beta_2 L(1+jC)]^{1/2}} exp \left(-\frac{T^2}{[T_0^2 - j\beta_2 L(1+jC)]} \right)$

 $\frac{T_0}{[j\beta_2 L(1+jC)]^{1/2}} exp \left(-\frac{(1+jC)T^2}{2[T_0^2 - j\beta_2 L(1+jC)]}\right)$

 $\frac{T_0}{[T_0^2 - j\beta_2 L(1+jC)]^{1/2}} exp \left(-\frac{(1+jC)T^2}{2[T_0^2 - j\beta_2 L(1+jC)]} \right)$

No, the answer is incorrect.

Accepted Answers:

Score: 0

 $\frac{T_0}{[T_0^2 - j\beta_2 L(1+jC)]^{1/2}} exp\left(-\frac{(1+jC)T^2}{2T_0^2}\right)$

6.53 km

output is

Week- 0

How to access the portal

NPTEL » Fiber-Optic Communication Systems and Techniques

1 point

1 point

Unit 8 - Week 5 Lectures

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.	Due on 2019-09-04, 23:59 IST
) The LP ₁₂ fiber mode is a combination of	1 pc
$TE_{01}, TM_{01}, HE_{21}$ modes	
EH_{11}, HE_{31} modes	
$TE_{02}, TM_{02}, HE_{22}$ modes	
$TE_{01}, TM_{01}, HE_{22}$ modes	
No, the answer is incorrect.	
Score: 0	
Accepted Answers: $TE_{02}, TM_{02}, HE_{22} \ modes$	
A fiber of length 100 km has loss coefficient of 0.046 km^{-1} . The total loss in the fiber is	1 pc
○ 4.60 dB	
○ 19.97 dB	
○ 6.62 dB	
○ 16 dB	
No, the answer is incorrect.	
Score: 0	
Accepted Answers: 19.97 dB	
3) If 4 dBm power is launched in the fiber given in Question 1, the output power is	1 pc
○ 0.025 mW	
0.025 HW	
0.012 mW	
0.6 mW	
No, the answer is incorrect.	
Score: 0	
Accepted Answers: 0.025 mW	
If a photo-detector which can detect minimum power of -13 dBm is used at the fiber output and a pulse having	g launch nower of 4 dBm is launched in the fiber having 1 pe
coefficient 0.046 km^{-1} , to detect the input pulse the fiber can have maximum length of	g maner power of 4 abin is manered in the riber having 7 pe
85.1 km	
○ 140.2 km	
○ 35 km	
○ 100 km	
No, the answer is incorrect.	

10) If a chirped Gaussian pulse $U(0,t) = exp\left(-\frac{(1+jC)T^2}{2T_0^2}\right)$ is launched in a fiber of length L having dispersion coefficient β_2 . The equation of the pulse at the fiber