

Course outline

How does an NPTEL online course work?

Week 0 : Prerequisite

Week 1 : Introduction to Computer Vision and Basic Concepts of Image Formation

Lec 1 : Introduction to Computer Vision

Lec 2 : Introduction to Digital Image Processing

Lec 3 : Image Formation: Radiometry

Quiz : Assignment 1

Feedback Form

Lecture notes

Week 2: Fundamental Concepts of Image Formation

Week 3: Fundamental Concepts of Image Formation

Week 4: Image Processing Concepts

Week 5: Image Processing Concepts

Week 6: Image Processing Concepts

Week 7: Image Descriptors and Features

Week 8: Image Descriptors and Features

Week 9: Image Descriptors and Features

Week 10: Fundamentals of Machine Learning

Week 11: Applications of Computer Vision

Week 12: Applications of Computer Vision

Live Sessions

Download videos

Text transcripts

Assignment Solutions

Assignment 1

The due date for submitting this assignment has passed.

Due on 2021-02-03, 23:59 IST.

As per our records you have not submitted this assignment.

1) Of the following, _____ has the maximum frequency.

1 point

- a. UV Rays
- b. Gamma Rays
- c. Microwaves
- d. Radio Waves

No, the answer is incorrect.

Score: 0

Accepted Answers:

b. Gamma Rays

2) The difference in intensity between the highest and the lowest intensity levels in an image is _____

1 point

- a) Noise
- b) Saturation
- c) Contrast
- d) Brightness

No, the answer is incorrect.

Score: 0

Accepted Answers:

c) Contrast

3) Images quantized with insufficient brightness levels will lead to the occurrence of _____

1 point

- a) Pixilation
- b) Blurring
- c) False Contours
- d) None of the Mentioned

No, the answer is incorrect.

Score: 0

Accepted Answers:

c) False Contours

4) What is the phenomenon one encounters when a lens fails to converge all the wavelength of light on a single focal plane?

1 point

- a. Vignetting effect.
- b. Chromatic aberration.
- c. Non-collinear vanishing points.
- d. Distorted image.

No, the answer is incorrect.

Score: 0

Accepted Answers:

b. Chromatic aberration.

5) Gray values of an image are

1 point

- (a) (i) and (iii)
- (b) Only (iv)
- (c)(ii) and (iv)
- (d) (iii) and (iv)

No, the answer is incorrect.

Score: 0

Accepted Answers:

(a) (i) and (iii)

6) In computer vision, the purpose of prepossessing is used for

1 point

- a) Store image as array of pixel
- b) Convert analog information of light information into digital form.
- c) Remove noise from the image.
- d) Obtain a distinction between object and background.

No, the answer is incorrect.

Score: 0

Accepted Answers:

c) Remove noise from the image.

7) Brightness of a Lambertian surface is indicated by

1 point

- a) BRDF, which is constant, and $1/\pi$ times of reflectance coefficient.
- b) BRDF, which changes according to the outgoing radiance.
- c) BRDF, which varies inversely to changes in reflectance coefficient.
- d) none of the above

No, the answer is incorrect.

Score: 0

Accepted Answers:

 a) BRDF, which is constant, and $1/\pi$ times of reflectance coefficient.

8) Your night light has a radiant flux of 10 watts, what is the irradiance on your radiometry notes which fell 2 meters from the light when you fell asleep (assuming your notes were perpendicular to the night light)? (W/m^2)

1 point

- a) 0.299
- b) 0.25
- c) 0.199
- d) 0.55

No, the answer is incorrect.

Score: 0

Accepted Answers:

c) 0.199

9) Given the 5-watt source coming in from $\frac{2\pi}{3}$ solid angle (in sr) of a radius 3 meter, the corresponding source of energy carried by the ray is

1 point

- a) $\frac{5}{4\pi^2}$
- b) $\frac{1}{2\pi^2}$
- c) π^2
- d) 1

No, the answer is incorrect.

Score: 0

Accepted Answers:

 a) $\frac{5}{4\pi^2}$

10) If you have a sensor with a responsivity of $2 V W^{-1}$, an output of 5 volts, is 1 cm on a side, and is 10 cm from a source, determine the radiant intensity of the source.

1 point

- a) $200 W sr^{-1}$
- b) $225 W sr^{-1}$
- c) $250 W sr^{-1}$
- d) $222 W sr^{-1}$

No, the answer is incorrect.

Score: 0

Accepted Answers:

 c) $250 W sr^{-1}$