Courses » Advanced Topics in Probability and Random Processes

Announcements Course Ask a Question Progress Mentor FAQ
Unit 6 - Week 5: Markov Chain

Course outline

How to access the portal

Week 1:

Introduction to probability and Random Variable

Week 2: Random process basics and infinite sequence of events

Week 3:
Convergence of
Sequence of
Random
Variables

Week 4:
Applications of Convergence Theory

Week 5: Markov Chain

Crammer's
Theorem for
Large Deviation
Introduction to
Markov
Processes
Discrete Time
Marknv Chain

Assignment 5

The due date for submitting this assignment has passed.
As per our records you have not submitted this
Due on 2018-09-12, 23:59 IST. assignment.

1) Suppose $X_{n}, n=1,2,3, \ldots, 100$ are 100 independent random 1 point numbers, each uniformly distributed between 0 to 6 . According to the weak law of large numbers, the approximate value of $\sum_{i=1}^{100} \frac{X_{i}^{2}}{100}$ is
No, the answer is incorrect.
Score: 0
Accepted Answers:
12
2) Suppose X_{n} is a sequence of independent and identically distributed random 1 point variables with $P\left(X_{n}=-1\right)=P\left(X_{n}=1\right)=\frac{1}{4}$ and $P\left(X_{n}=0\right)=\frac{1}{2}$.

Define $\mu_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.According to the strong law of the large numbers, as $n \rightarrow \infty$

$$
\left\{\mu_{n}\right\} \xrightarrow{\text { a.s. }}\{\mu=0\}
$$

$$
\left\{\mu_{n}\right\} \xrightarrow{\text { a.s. }}\left\{\mu=\frac{1}{4}\right\}
$$

© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs - G+

Week 7:
Continuous
Time Markov
Chain

Week 8:
Martingle
Process

New Unit

Assignment Solutions

Accepted Answers:

$$
\left\{\mu_{n}\right\} \xrightarrow{\text { a.s. }}\{\mu=0\}
$$

3) Suppose S represents the total number of tails obtained in 100 independent1 point tossing of a fair coin. According to the central limit theorem, the approximate value for $P(S \geq 60)$ is

$$
\begin{aligned}
& \frac{\int_{2}^{\infty} e^{\frac{-x}{2}} d x}{\sqrt{2 \pi}} \\
& \frac{\int_{2}^{\infty} e^{\frac{-x^{2}}{2}} d x}{\sqrt{2 \pi}} \\
& \frac{\int_{1}^{\infty} e^{\frac{-x^{2}}{2}} d x}{\sqrt{2 \pi}} \\
& \frac{\int_{2}^{\infty} e^{\frac{-x^{3}}{2}} d x}{\sqrt{2 \pi}}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\frac{\int_{2}^{\infty} e^{\frac{-x^{2}}{2}} d x}{\sqrt{2 \pi}}
$$

4) X_{n} is a sequence of independent random variables with identical moment $\quad 1$ point generating function $M_{x}(s)=e^{\frac{s^{2}}{2}}$. The variance of the random variable is

No, the answer is incorrect.
Score: 0
Accepted Answers:
1
5) X_{n} is a sequence of independent random variables with identical moment 1 point generating function $M_{X}(s)=e^{\frac{s^{2}}{2}}$ and $S_{n}=\sum_{i=1}^{n} X_{i}$. According to Cramer's theorem, the probability $P\left(\frac{S_{n}}{n} \geq 3\right)$ for large n is approximately equal to

No, the answer is incorrect.

Score: 0

Accepted Answers:
$e^{\frac{-9 n}{2}}$
6) X_{n} is a sequence of independent random variables with identical mean μ and identical variance σ^{2}. If $S_{n}=\sum_{i=1}^{n} X_{i}$, then $E\left(\frac{S_{n}}{n}\right)$ and $\operatorname{Var}\left(\frac{S_{n}}{n}\right)$ respectively are

$$
\mu \text { and } \frac{\sigma^{2}}{n}
$$

μ and σ^{2}
μ and $\frac{\sigma^{2}}{\sqrt{n}}$

$$
\mu^{2} \text { and } \sigma^{2}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
μ and $\frac{\sigma^{2}}{n}$
7) Suppose X_{n} is a sequence of independent and identically distributed random 1 point variables with mean μ.
Define $\mu_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. Then, according to CLT, μ_{n} is approximately distributed as

$$
\begin{aligned}
& N\left(\mu, \frac{\sigma^{2}}{n}\right) \\
& N\left(\mu, \sigma^{2}\right) \\
& N\left(\mu, \frac{\sigma^{2}}{\sqrt{n}}\right) \\
& N(\mu, \sigma)
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$N\left(\mu, \frac{\sigma^{2}}{n}\right)$

