NPTEL

reviewer4@nptel.iitm.ac.in •

Courses » Advanced Topics in Probability and Random Processes

Announcements Course Ask a Question Progress Mentor FAQ

Unit 6 - Week 5: Markov Chain

Course outline

How to access the portal

Week 1: Introduction to probability and Random Variable

Week 2: Random process basics and infinite sequence of events

Week 3: Convergence of Sequence of Random Variables

Week 4: Applications of Convergence Theory

Week 5: Markov Chain

- Crammer's Theorem for Large Deviation
- Introduction to
 Markov
 Processes
- Discrete Time
 Markov Chain

Assignment 5

The due date for submitting this assignment has passed.

As per our records you have not submitted this assignment.

Due on 2018-09-12, 23:59 IST.

1) Suppose $X_n, n=1,2,3,\ldots,100$ are 100 independent random — 1 point numbers, each uniformly distributed between 0 to 6. According to the weak

law of large numbers, the approximate value of $\sum_{i=1}^{100} \frac{X_i^2}{100}$ is

- 0 ;
- 0
- 12

No, the answer is incorrect. Score: 0

Accepted Answers:

12

2) Suppose X_n is a sequence of independent and identically distributed random **1** point variables with $P(X_n=-1)=P(X_n=1)=\frac{1}{4}$ and $P(X_n=0)=\frac{1}{2}$.

Define $\mu_n=rac{1}{n}\sum_{i=1}^n X_i$.According to the strong law of the large numbers, as $n o\infty$

- $\{\mu_n\} \xrightarrow{\text{a.s.}} \{\mu = 0\}$
- $\{\mu_n\} \xrightarrow{\text{a.s.}} \{\mu = \frac{1}{4}\}$
- a.s. , 1,

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

G+

A project of

National Programme on Technology Enhanced Learning

NASSCOM®

Funded by

In association with

Week 7: Continuous **Time Markov** Chain

Week 8: Martingle **Process**

New Unit

Assignment Solutions

Accepted Answers:

$$\{\mu_n\} \xrightarrow{\mathrm{a.s.}} \{\mu = 0\}$$

3) Suppose S represents the total number of tails obtained in 100 independent 1 point tossing of a fair coin. According to the central limit theorem, the approximate value for P(S > 60) is

$$\frac{\int_{2}^{\infty} e^{\frac{-x}{2}} dx}{\sqrt{2\pi}}$$

$$\int_{2}^{\infty} e^{\frac{-x^2}{2}} dx$$

$$\frac{\int_{1}^{\infty} e^{\frac{-x^2}{2}} dx}{\sqrt{2\pi}}$$

$$\frac{\int_{2}^{\infty} e^{\frac{-x^3}{2}} dx}{\sqrt{2\pi}}$$

No, the answer is incorrect.

Score: 0

Accepted Answers:

$$\frac{\int_2^\infty e^{\frac{-x^2}{2}} dx}{\sqrt{2\pi}}$$

4) X_n is a sequence of independent random variables with identical moment generating function $M_x(s)=e^{rac{s^2}{2}}$. The variance of the random variable is

No, the answer is incorrect.

Score: 0

Accepted Answers:

5) X_n is a sequence of independent random variables with identical moment generating function $M_X(s)=e^{rac{s^2}{2}}$ and $S_n=\sum_{i=1}^n X_i$. According to Cramer's theorem, the probability $P(rac{S_n}{n} \geq 3)$ for large n is approximately equal to

 e^{-6n}

No, the answer is incorrect.

Score: 0

Accepted Answers:

 $e^{\frac{-9n}{2}}$

6) X_n is a sequence of independent random variables with identical mean μ and identical variance σ^2 . If $S_n=\sum_{i=1}^n X_i$, then $E(\frac{S_n}{n})$ and $Var(\frac{S_n}{n})$ respectively are

 μ and $rac{\sigma^2}{n}$

 μ and σ^2

 μ and $\frac{\sigma^2}{\sqrt{n}}$

 μ^2 and σ^2

No, the answer is incorrect.

Score: 0

Accepted Answers:

 μ and $rac{\sigma^2}{n}$

7) Suppose X_n is a sequence of independent and identically distributed random ${\it 1 \, point}$ variables with mean μ .

Define $\mu_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then , according to CLT, μ_n is approximately distributed as

 \mathbb{C}

 $N(\mu, rac{\sigma^2}{n})$

 $N(\mu, \sigma^2)$

 $N(\mu, rac{\sigma^2}{\sqrt{n}})$

 $N(\mu, \sigma)$

No, the answer is incorrect.

Score: 0

Accepted Answers:

 $N(\mu, \frac{\sigma^2}{n})$

Previous Page

End