

Advanced Topics in Probability and Random Pro...

Continuous Score: 0 Time Markov ce De **Accepted Answers:** Chain Borelcantelli lemma 2 Week 8: 4) $\{X_n\}$ is a sequence of independent random variables 1 point Martingle with $P(X_n=0)=1-rac{1}{n^2}$ and $P(X_n=n)=rac{1}{n^2}$. Which one of the BorelCantelli lemmas Process can be used to show if $\{X_n^n\}$ converges almost sure to $\{X=0\}$ or not? New Unit BorelCantelli Lemma 1 Assignment Solutions BorelCantelli Lemma 2 No, the answer is incorrect. Score: 0 **Accepted Answers:** BorelCantelli Lemma 1 5) Suppose $\{X_n\}$ is a sequence of independent random variables taking two 1 point values $X_n=\sqrt{n}~$ with probability $rac{1}{n}$ and $X_n=0$ with probability $(1-rac{1}{n}).$ Examine if $\{X_n\}$ converges to $\{X=0\}$ in probability, in distribution or in mean square sense. Converges in probability Converges in distribution Converges in mean square No, the answer is incorrect. Score: 0 **Accepted Answers:** Converges in distribution 6) Consider a random process $X(t) = A \cos(\omega_0 t)$ where ω_0 is a constant and A is 1 point uniformly distributed between -5 and 5. Then \bigcirc EX(t) is a constant EX(t)X(t+t) is a function of lag t only X(t) is a wide-sense stationary process X(t) is a strict-sense stationary process No, the answer is incorrect. Score: 0 **Accepted Answers:** EX(t) is a constant 7) Consider a random process $X(t) = \cos(\omega_0 t + f)$ where ω_0 is a constant, f is **0** points uniformly distributed between -p to p and A is zero mean random variable with variance 1 and independent of f. Then EX(t) is a constant $EX^2(t) = A^2$ X(t) is a wide-sense stationary process

Advanced Topics in Probability and Random Pro...

X(t) is a strict-sense stationary process No, the answer is incorrect. Score: 0 Accepted Answers: EX(t) is a constant X(t) is a wide-sense stationary process 8) $\{X(t)\}$ is a wide-sense stationary Gaussian random process. Then 1 point EX(t) = 0 $cov(X(t), X(t+\tau) = 0$ The random variables $X(t_1), X(t_2), \ldots, X(t_n)$ are jointly Gaussian $\{X_n\}$ is strict-sense stationary No, the answer is incorrect. Score: 0 **Accepted Answers:** The random variables $X(t_1), X(t_2), \ldots, X(t_n)$ are jointly Gaussian $\{X_n\}$ is strict-sense stationary 9) Suppose X(t) is a constant-mean independent increment process. For $t_1 > t_2$ **1** point $X(t_1)$ and $X(t_2)$ are independent $X(t_2)$ and $X(t_1) - X(t_2)$ are independent $EX(t_1)X(t_2) = EX^2(t_1)$ $EX(t_1)X(t_2) = EX^2(t_2)$ No, the answer is incorrect. Score: 0 **Accepted Answers:** $X(t_2)$ and $X(t_1) - X(t_2)$ are independent $EX(t_1)X(t_2) = EX^2(t_2)$

Previous Page

End