Courses » Advanced Topics in Probability and Random Processes

Announcements Course Ask a Question Progress Mentor FAQ
Unit 5 - Week
4: Applications of Convergence Theory

Course outline

How to access the portal

Week 1:
Introduction to probability and Random Variable

Week 2: Random process basics and infinite sequence of events

Week 3:
Convergence of
Sequence of Random Variables

Week 4:
Applications of Convergence Theory

Laws of Large Numbers

Central Limit
Theorem
Large Deviation Theory

Quiz :
Assignment 4

Week 5: Markov

Assignment 4

The due date for submitting this assignment has passed
As per our records you have not submitted this
Due on 2018-09-12, 23:59 IST. assignment.

1) Consider the sequence of events on the real line given1 point by $A_{n}=\left\{\begin{array}{ll}\left(1,3+\frac{1}{n}\right), & \mathrm{n} \text { odd } \\ \left(2-\frac{1}{n}, 5\right), & \mathrm{n} \text { even }\end{array}\right.$. Find $\lim _{n \rightarrow \infty} \sup A_{n}$ and $\lim _{n \rightarrow \infty} \inf A_{n}$.$(1,5),(2,3)$$(2,3),(1,5)$$(1,4),(2,3)$
$(1,3),(3,5)$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$(1,5),(2,3)$
2) Suppose $\left\{A_{n}\right\}_{n=1}^{\infty}$ is a sequence of subsets of \mathbb{R}, given 1 point by $A_{n}=\left[1,5-\frac{1}{n}\right]$. find $\lim _{n \rightarrow \infty} \sup A_{n}$ and $\lim _{n \rightarrow \infty} \inf A_{n}$.$(1,5),(1,5)$
[1,5), $[1,5)$[1,5), [1,5]
0
[1,5], [1,5]
No, the answer is incorrect.
Score: 0
Accepted Answers:
[1,5), [1,5)
3) $\left\{X_{n}\right\}$ is a sequence of independent random variables

Continuous
Time Markov Chain

Week 8:
Martingle
Process

New Unit

Assignment Solutions

Score: 0

Accepted Answers:
Borelcantelli lemma 2
4) $\left\{X_{n}\right\}$ is a sequence of independent random variables

1 point
with $P\left(X_{n}=0\right)=1-\frac{1}{n^{2}}$ and $P\left(X_{n}=n\right)=\frac{1}{n^{2}}$. Which one of the BorelCantelli lemmas can be used to show if $\left\{X_{n}\right\}$ converges almost sure to $\{X=0\}$ or not?BoreICantelli Lemma 1BorelCantelli Lemma 2

No, the answer is incorrect.
Score: 0
Accepted Answers:
BorelCantelli Lemma 1
5) Suppose $\left\{X_{n}\right\}$ is a sequence of independent random variables taking two

1 point values $X_{n}=\sqrt{n}$ with probability $\frac{1}{n}$ and $X_{n}=0$ with probability $\left(1-\frac{1}{n}\right)$. Examine if $\left\{X_{n}\right\}$ converges to $\{X=0\}$ in probability, in distribution or in mean square senseConverges in probabilityConverges in distribution

Converges in mean square
No, the answer is incorrect.
Score: 0
Accepted Answers:
Converges in distribution
6) Consider a random process $X(t)=A \cos \left(\omega_{0} t\right)$ where ω_{0} is a constant and A is 1 point uniformly distributed between -5 and 5 . Then
$E X(t)$ is a constant
$E X(t) X(t+\boldsymbol{t})$ is a function of lag \boldsymbol{t} only
$X(t)$ is a wide-sense stationary process
$X(t)$ is a strict-sense stationary process
No, the answer is incorrect.
Score: 0
Accepted Answers:
$E X(t)$ is a constant
7) Consider a random process $X(t)=\cos \left(\omega_{0} t+f\right)$ where ω_{0} is a constant, f is 0 points uniformly distributed between -p to p and A is zero mean random variable with variance 1 and independent of f. Then
$E X(t)$ is a constant
$E X^{2}(t)=A^{2}$
$X(t)$ is a wide-sense stationary process

$$
X(t) \text { is a strict-sense stationary process }
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$E X(t)$ is a constant
$X(t)$ is a wide-sense stationary process
8) $\{X(t)\}$ is a wide-sense stationary Gaussian random process. Then

1 point
$E X(t)=0$
$\operatorname{cov}(X(t), X(t+\tau)=0$

The random variables $X\left(t_{1}\right), X\left(t_{2}\right), \ldots, X\left(t_{n}\right)$ are jointly Gaussian
$\left\{X_{n}\right\}$ is strict-sense stationary
No, the answer is incorrect.
Score: 0
Accepted Answers:
The random variables $\quad X\left(t_{1}\right), X\left(t_{2}\right), \ldots, X\left(t_{n}\right)$ are jointly Gaussian $\left\{X_{n}\right\}$ is strict-sense stationary
9) Suppose $X(t)$ is a constant-mean independent increment process. For $t_{1}>t_{2} \quad \mathbf{1}$ point $X\left(t_{1}\right)$ and $X\left(t_{2}\right)$ are independent
$X\left(t_{2}\right)$ and $X\left(t_{1}\right)-X\left(t_{2}\right)$ are independent
$E X\left(t_{1}\right) X\left(t_{2}\right)=E X^{2}\left(t_{1}\right)$

$$
E X\left(t_{1}\right) X\left(t_{2}\right)=E X^{2}\left(t_{2}\right)
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$X\left(t_{2}\right)$ and $X\left(t_{1}\right)-X\left(t_{2}\right)$ are independent
$E X\left(t_{1}\right) X\left(t_{2}\right)=E X^{2}\left(t_{2}\right)$

Previous Page

