Courses » Advanced Topics in Probability and Random Processes

Announcements Course Ask a Question Progress Mentor FAQ

Unit 3 - Week

2: Random process basics and infinite sequence of events

```
Course outline
How to access the portal
Week 1:
Introduction to probability and
Random
Variable
Week 2: Random process basics and infinite sequence of events
Random
Vectors and
Random
Processes
Infinite
Sequence of
Events-I
Infinite
Sequence of
Events-II
Quiz :
Assignment 2
Quiz :
Assignement 2
revised
```

Week 3:
Convergence of
Sequence of

Assignment 2

The due date for submitting this assignment has passed.
As per our records you have not submitted this Due on 2018-09-05, 23:59 IST. assignment.

1) Let X ba a random variable with PDF $f_{X}(x)= \begin{cases}0, & \text { if } x<0 \\ A e^{-x} & \text { otherwise } .\end{cases}$ Find $A, P(X \geq 3)$ and $E X^{2}$.
$1, \mathrm{e}^{-3}$ and 2
$1, \mathrm{e}^{-2}$ and 2
$2, \mathrm{e}^{-3}$ and 3
$2, \mathrm{e}^{-2}$ and 2
No, the answer is incorrect.
Score: 0
Accepted Answers:
$1, \mathrm{e}^{-3}$ and 2
2) Let X and Y be a random variable with the

0 points
PDF $\mathrm{f}_{\mathrm{X}, \mathrm{Y}}(\mathrm{X}, \mathrm{y})=2 \mathrm{e}^{-2 \mathrm{X}-\mathrm{y}} \mathrm{u}(\mathrm{X}) \mathrm{u}(\mathrm{y})$ where $\mathrm{u}(\mathrm{X})$ is the unit step function. Find the probabilities $\mathrm{P}(1<\mathrm{X} \leq 2,2<\mathrm{Y} \leq 4)$ and the marginal PDFs of X and Y .
$\mathrm{e}^{-4}\left(\mathrm{e}^{-2}-1\right)^{2}, 2 \mathrm{e}^{-2 \mathrm{x}} \mathrm{u}(\mathrm{x})$ and $\mathrm{e}^{-\mathrm{y}} \mathrm{u}(\mathrm{y})$
$\mathrm{e}^{-2}\left(\mathrm{e}^{-2}-1\right)^{2}, 2 \mathrm{e}^{-2 \mathrm{x}} \mathrm{u}(\mathrm{x})$ and $\mathrm{e}^{-\mathrm{y}} \mathrm{u}(\mathrm{y})$

Week 5: Markov Chain

Week 6:Discrete Time Markov Chain

Week 7:
Continuous
Time Markov
Chain

Week 8:
Martingle
Process

New Unit

Assignment Solutions

Score: 0
Accepted Answers:
$\mathrm{e}^{-4}\left(\mathrm{e}^{-2}-1\right)^{2}, 2 \mathrm{e}^{-2 \mathrm{x}} \mathrm{u}(\mathrm{x})$ and $\mathrm{e}^{-\mathrm{y}} \mathrm{u}(\mathrm{y})$
3) Recall the joint PDF of a two dimensional

1 point Gaussian $f_{X, Y}(x, y)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} e^{\frac{-1}{2\left(1-\rho^{2}\right)}\left[\frac{\left(x-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}-2 \rho \frac{\left(x-\mu_{1}\right)\left(y-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}+\frac{\left(y-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right]}$. Now consider a two dimensional Gaussian $f_{X, Y}(X, y)=\frac{5}{8 \pi} e^{\frac{-25}{32}\left[x^{2}-\frac{6}{5} x y+y^{2}\right]}$. Find $E X, E Y, \sigma_{X}^{2}, \sigma_{Y}^{2}, \rho$ and the conditional expectation $\mathrm{E}[\mathrm{Y} \mid \mathrm{X}=3]$.$1,1,2,2,2 / 5,9 / 5$$0,0,1,1,3 / 5$ and $-9 / 5$$0,0,1,1,3 / 5$ and $9 / 5$$0,0,1,1,-3 / 5$ and $-9 / 5$
No, the answer is incorrect.
Score: 0
Accepted Answers:
0, 0, 1,1, 3/5 and -9/5
4) Suppose X and Y are two random variables with the means $E X=\frac{7}{4}, E Y=\frac{5}{4}$, mean square values $E X^{2}=5, E Y^{2}$ and the correlation $E X Y=2$. Find the values of $\sigma_{X}^{2}, \sigma_{Y}^{2}$ and $\operatorname{COV}(X, Y)$. Are X and Y independent?31/16, 23/16, -3/16 and dependent31/16, 23/16, -3/16 and independent23/16, 23/16, -3/16 and dependent31/16, 23/16, 3/16 and dependent
No, the answer is incorrect.
Score: 0
Accepted Answers:
31/16, 23/16, -3/16 and independent

