

18/05/2018

Optimization Techniques for Digital VLSI Design - - Unit 4 - RTL Optimizations [Part-1]

```
the expression acc = A[i]*i + acc?
dout_t loop_p(din_t A[N])
{
    int i, j
    state dout t a;
    for(i=0; i<20; i++){ //Loop_I, outer loop
    {
      for(j=0; j<20; j++){//Loop_J, inner loop
         acc = A[i]*j + acc;
      }
    }
    return acc;
}
     0 1
     20
     200
     400
  No, the answer is incorrect.
  Score: 0
  Accepted Answers:
  400
```

4) Consider the following code. Assume one clock cycle is required to execute the loop body of **1** *point* each loop. Also assume that the Loop_1 is fully unrolled and the Loop_2 is fully pipe lined. How many time step is required to execute this code? Ignore time required to initialize etc.

void loop_seq(din_t A[N], din_t B[n], dout_t X[n], dout_t Y[N], limit1, limit2)

```
{
    dout t X out = 0;
    dout t Y out = 0;
    for(i=0; i< 10; i++){ //Loop_1
         X out = X out + A[1];
         X[1] = X_{out};
    }
    for(i=0; i< 20; i++){ //Loop2
         Y out = Y out + B[i];
         Y[i] = Y_out
    }
}
     0 11
     20
     21
     30
  No, the answer is incorrect.
  Score: 0
  Accepted Answers:
  21
```

5) If we want to replace the multiplication of the expression y = x * 64 by shift operation. What **0** points would be the equivalent expression? The 'd << k' denotes the number d is right shifted by k bits. Similarly, 'd >> k' denotes that the number d is left shifted by k bits.

```
    y = x << 6</li>
    y = x >> 6
    y = x >> 6
    y = x << 5</li>
    y = x >> 6

No, the answer is incorrect.
```

https://onlinecourses.nptel.ac.in/noc18_ec06/unit?unit=16&assessment=19

Score: 0

Optimization Techniques for Digital VLSI Design - - Unit 4 - RTL Optimizations [Part-1]

Accepted Answers: *y* = *x* << 6

6) S1: Code motion may reduce life time of a variable and hence may reduce number of **1** point registers.

S2: Loop invariant code motion is used to reduce computation times.

Which one of the above statements are TRUE about code motion?

\bigcirc	S1
\bigcirc	S2
	S1 and S2
\bigcirc	None of the above.

No, the answer is incorrect. Score: 0

Accepted Answers: S1 and S2

7) Loop unrolling causes an increase in the critical path delay. The reasons are: **1** point

S1: Additional operations after unrolling lead to increased sharing of resources, possibly increasing the sizes of the MUXes and hence, their delay.

S2: The number of FSM states increases leading to a larger state register and ultimately to longer FSM delays

S3: A larger number of nodes need to be scheduled.

Which of them are valid reason?

- S1 and S2
- S2 and S3
- S1 and S3
- S1, S2 and S3

No, the answer is incorrect. Score: 0

Accepted Answers: S1, S2 and S3

8) Consider the following circuit. What would be the correct retimed circuit?

1 point

Optimization Techniques for Digital VLSI Design - - Unit 4 - RTL Optimizations [Part-1]

