PTEL reviewer3@nptel.iitm.a ourses » Information Theory, Coding and Cryptography							
Course outline	Assignment						
How to access the portal	The due date for submit As per our records you assignment.	-		ue on 2018	-09-26, 23	:59 IST	
Week 1	1) Let α be the primitive el	ement of GF(2 ⁴). All the conjugates	of $\boldsymbol{\alpha}$ and the co	orresponding	1 poi	
Week 2	minimal polynomial are						
Week 3	Conjugates: { a^1 , a^2 , a^4 , a^8 }, minimal polynomial = x ⁴ + x + 1 Conjugates: { a^1 , a^2 , a^4 , a^8 }, minimal polynomial = x ⁴ + x ³ + 1						
Week 4	Conjugates: { α^{1} , α^{3} , α^{6} , α^{12} }, minimal polynomial = $x^{4} + x + 1$ Conjugates: { α^{1} , α^{3} , α^{6} , α^{12} }, minimal polynomial = $x^{4} + x + 1$						
Week 5	Conjugates: { $\alpha^1, \alpha^4, \alpha^8, \alpha^{12}$ }, minimal polynomial = $x^4 + x^3 + 1$						
Week 6	No, the answer is incor Score: 0	rect.					
Week 7	Accepted Answers: Conjugates: $\{\alpha^1, \alpha^2, \alpha^4, \alpha^8\}$	3}. minimal po	Ivnomial = x ⁴ + x + 1				
Week 8	2) Let α be the primitive element of GF(2 ⁶). If $\beta = \alpha^7$, the value of β^9 will be					1 poi	
 Introduction to BCH Codes: Generator Polynomials Multiple Error 	$ \begin{array}{c} \alpha^{3} \\ \alpha^{7} \\ \alpha^{9} \end{array} $						
Correcting BCH Codes, Decoding of BCH Codes	1 No, the answer is incor Score: 0	rect.					
 Introduction to Reed Solomon (RS) Codes 	Accepted Answers: 1						
Quiz : Assignment 8	3) The square root of the e	element a ⁵ in	GF(2 ³) is (i.e., find γ w	here $\gamma^2 = \alpha^5$)		1 poi	
Week 9	α ²						

Funded by

NASSCOM®

Information Theory, Coding and Cryptography - ...

Information Theory, Coding and Cryptography - ...

Accepted Answers: 11	
Score: 0	
No, the answer is incorrect.	
• 11 • 12	
9	
10)The minimum distance for the RS (31, 21) code is	1 pc
Accepted Answers: n = 15	
Score: 0	
No, the answer is incorrect.	
🔘 n = 63	
n = 31	
n = 15	
n = 7	
9) Find the block length, n, of an RS code that has $k = t$	1 po
$g(x) = x^6 + a^{10}x^5 + a^{14}x^4 + a^4x^3 + a^6x^2 + a^9x + a^6$	
Score: 0 Accepted Answers:	
No, the answer is incorrect.	
$ g(x) = x^6 + \alpha^{10}x^5 + \alpha^{14}x^4 + \alpha^4x^3 + \alpha^6x^2 + \alpha^9x + \alpha^6 $	
$ g(x) = x^6 + \alpha^6 x^5 + \alpha^{10} x^4 + \alpha^4 x^3 + \alpha x^2 + \alpha^3 x + \alpha^9 $	
$ (x) = x^6 + a^{10}x^5 + a^5x^4 + a^4x^3 + a^3x^2 + a^9x + a^4 $	

Previous Page

End