Courses » Information Theory, Coding and Cryptography

Announcements Course Ask a Question Progress Mentor FAQ

Unit 9 - Week

Course Outline
How to access the portal
Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8
Introduction to
BCH Codes:
Generator Polynomials Multiple Error Correcting BCH Codes, Decoding of BCH Codes Assignment 8 Introduction to (Reed Solomon
Quiz :

Week 9

Assignment 8

The due date for submitting this assignment has passed.
As per our records you have not submitted this
Due on 2018-09-26, 23:59 IST. assignment.

1) Let α be the primitive element of $\mathrm{GF}\left(2^{4}\right)$. All the conjugates of α and the corresponding $\mathbf{1}$ point minimal polynomial areConjugates: $\left\{\alpha^{1}, \alpha^{2}, \alpha^{4}, \alpha^{8}\right\}$, minimal polynomial $=x^{4}+x+1$Conjugates: $\left\{\alpha^{1}, \alpha^{2}, \alpha^{4}, \alpha^{8}\right\}$, minimal polynomial $=x^{4}+x^{3}+1$Conjugates: $\left\{\alpha^{1}, \alpha^{3}, \alpha^{6}, \alpha^{12}\right\}$, minimal polynomial $=x^{4}+x+1$Conjugates: $\left\{\alpha^{1}, \alpha^{4}, \alpha^{8}, \alpha^{12}\right\}$, minimal polynomial $=x^{4}+x^{3}+1$
No, the answer is incorrect.
Score: 0
Accepted Answers:
Conjugates: $\left\{\alpha^{1}, \alpha^{2}, \alpha^{4}, \alpha^{8}\right\}$, minimal polynomial $=x^{4}+x+1$
2) Let α be the primitive element of $\operatorname{GF}\left(2^{6}\right)$. If $\beta=\alpha^{7}$, the value of β^{9} will be
$0 a$
-1
No, the answer is incorrect.
Score: 0
Accepted Answers:
1
3) The square root of the element α^{5} in $\operatorname{GF}\left(2^{3}\right)$ is (i.e., find y where $y^{2}=\alpha^{5}$)

1 point
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs

National Programme on Technology Enhanced Leaming

Funded by

Additional
Lectures
α^{6}
ce De
4) The generator polynomial $\mathrm{g}(\mathrm{x})$ for a double error correcting ternary BCH code of block

1 point length 8 is

$$
g(x)=x^{5}+x^{4}+2 x^{3}+x^{2}+1
$$$g(x)=x^{5}+2 x^{4}+x^{3}+2 x^{2}+2$$g(x)=x^{5}+x^{4}+2 x^{2}+1$$g(x)=x^{5}+2 x^{4}+x^{3}+x^{2}+2$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$g(x)=x^{5}+2 x^{4}+x^{3}+x^{2}+2$
5) Let the primitive block length $\mathrm{n}=31$ with $\mathrm{q}=2$, and $\mathrm{m}=5$. The generator polynomial for a 1 point single error correcting BCH code will be$g(x)=x^{5}+x^{2}+1$$g(x)=x^{5}+x^{4}+1$$g(x)=x^{5}+x+1$$g(x)=x^{4}+x+1$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$g(x)=x^{5}+x+1$
6) For a binary $B C H$ code with $n=31$ the generator polynomial for a triple error correcting

1 point code will be$g(x)=x^{15}+x^{13}+x^{11}+x^{9}+x^{8}+x^{7}+x^{5}+x^{4}+x^{2}+x+1$$g(x)=x^{15}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{5}+x^{3}+x^{2}+x+1$$g(x)=x^{14}+x^{11}+x^{10}+x^{9}+x^{7}+x^{6}+x^{5}+x^{3}+x^{2}+x+1$$g(x)=x^{15}+x^{8}+x^{7}+x^{5}+x^{3}+x^{2}+x+1$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$g(x)=x^{15}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{5}+x^{3}+x^{2}+x+1$
7) RS code satisfies

1 point$n+k=2 t$$\mathrm{n}-\mathrm{k}=\mathrm{t}$$\mathrm{n}-\mathrm{k}=2 \mathrm{t}$$\mathrm{n}+\mathrm{k}=\mathrm{t}$
No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
n-k=2 t
$$

8) The generator polynomial for the triple error correcting RS code of block length 15 over

1 point $G F(16)$ is

$$
g(x)=x^{6}+a^{3} x^{5}+a^{4} x^{4}+\alpha^{2} x^{3}+\alpha^{6} x^{2}+\alpha^{9} x+\alpha^{2}
$$$g(x)=x^{6}+\alpha^{10} x^{5}+\alpha^{5} x^{4}+\alpha^{4} x^{3}+\alpha^{3} x^{2}+\alpha^{9} x+\alpha^{4}$$g(x)=x^{6}+\alpha^{6} x^{5}+\alpha^{10} x^{4}+\alpha^{4} x^{3}+\alpha x^{2}+\alpha^{3} x+\alpha^{9}$$g(x)=x^{6}+\alpha^{10} x^{5}+\alpha^{14} x^{4}+\alpha^{4} x^{3}+\alpha^{6} x^{2}+\alpha^{9} x+\alpha^{6}$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$g(x)=x^{6}+\alpha^{10} x^{5}+\alpha^{14} x^{4}+\alpha^{4} x^{3}+\alpha^{6} x^{2}+\alpha^{9} x+\alpha^{6}$
9) Find the block length, n, of an RS code that has $k=t$$\mathrm{n}=7$$\mathrm{n}=15$$\mathrm{n}=31$$\mathrm{n}=63$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$n=15$
$10)$ The minimum distance for the $\operatorname{RS}(31,21)$ code is
1 point
No, the answer is incorrect.
Score: 0
Accepted Answers:
11

Previous Page

