Courses » Information Theory, Coding and Cryptography

Unit 8 - Week 7

Course outline

How to access
the portal

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Introduction to
Cyclic Codes
Generator
Polynomial,
Syndrome
Polynomial and
Matrix
Representation
Fire code, Golay Code, CRC Codes and Circuit mplementation of Cyclic Codes

Quiz :
Assignment 7

Week 8

Week 9

Assignment 7

The due date for submitting this assignment has passed. Due on 2018-09-19, 23:59 IST. As per our records you have not submitted this assignment.

1) The degree of the generator polynomial $g(x)$ is$\mathrm{n}-\mathrm{k}+1$$\mathrm{n}+\mathrm{k}+1$
$\mathrm{n}-\mathrm{k}-1$
(1) $\mathrm{n}-$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$n-k$
2) Upon dividing $x^{12}+x^{7}+x^{4}+x^{3}+1$ by $x^{3}+x^{2}+1$ over GF(2) we get the quotient and 1 point remainder asquotient $=x^{9}+x^{8}+x^{7}+x^{5}+x^{4}+x^{3}$ and remainder $=1$
(1) quotient $=x^{9}+x^{7}+x^{5}+x^{4}+x^{2}$ and remainder $=0$
quotient $=x^{9}+x^{8}+x^{4}+x^{3}$ and remainder $=1$
(1) quotient $=x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x$ and remainder $=0$

No, the answer is incorrect.
Score: 0
Accepted Answers:
quotient $=x^{9}+x^{8}+x^{7}+x^{5}+x^{4}+x^{3}$ and remainder $=1$
3) The factors of $x^{8}-1$ over GF(3) are$(x+1)\left(x^{2}+1\right)\left(x^{2}+x+2\right)\left(x^{2}+2 x+1\right)$$(x+1)(x+2)\left(x^{2}+1\right)\left(x^{2}+x+2\right)\left(x^{2}+2 x+2\right)$$(x+1)(x+2)\left(x^{2}+1\right)\left(x^{2}+x+1\right)\left(x^{2}+x+1\right)$$(x+1)(x+2)\left(x^{2}+2\right)\left(x^{2}+x+1\right)\left(x^{2}+2 x+2\right)$
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -

Funded by

Lectures

$g(x)=(1+x)\left(1+x+x^{4}\right)$$g(x)=(1+x)\left(1+x+x^{2}+x^{3}+x^{4}\right)$$g(x)=(1+x)\left(1+x^{3}+x^{4}\right)$All of the above

No, the answer is incorrect.
Score: 0
Accepted Answers:
All of the above
5) Consider a binary cyclic code with block length $\mathrm{n}=15$ and the generator polynomial $\mathrm{g}(\mathrm{x})=\mathrm{x}^{8} 1$ point $+x^{7}+x^{6}+x^{4}+1$. The parity check polynomial for this is$h(x)=x^{7}+x^{6}+x^{4}+1$$h(x)=x^{7}+x^{5}+x^{3}+1$$h(x)=x^{7}+x^{6}+x^{2}+1$$h(x)=x^{7}+x^{6}+1$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$h(x)=x^{7}+x^{6}+x^{4}+1$
6) The cyclic code given by $g(x)=x^{14}+x^{11}+x^{9}+x^{5}+x^{2}+1$ is capable of correcting a burst

1 point error of up to a length of
No, the answer is incorrect.
Score: 0
Accepted Answers:
5
7) The generator polynomial for the Fire code with parameters $(35,27)$ is$g(x)=x^{8}+x^{7}+x^{5}+x^{2}+x+1$$g(x)=x^{8}+x^{6}+x^{4}+x^{3}+x+1$$g(x)=x^{7}+x^{6}+x^{5}+x^{2}+x+1$$g(x)=x^{8}+x^{6}+x^{5}+x^{3}+x+1$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$g(x)=x^{8}+x^{6}+x^{5}+x^{3}+x+1$
8) Consider a CRC code with the generator polynomialg $(x)=x^{16}+x^{15}+x^{2}+1$. Which

1 point statement is true:$(x+1)$ is a factor of the generator polynomial$\left(x^{15}+x+1\right)$ is a factor of the generator polynomialIt can detect all odd number of errorsAll of the above

No, the answer is incorrect.
Score: 0
Accepted Answers:
All of the above
9) If $g(x)$ has a factor $(x+1)$ then

1 pointAll code words have even parityWe can detect all errors consisting of odd number of bitsNo code word has odd weightAll of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
All of the above
10Determine the generator polynomial for the circuit shown below. The encoding is done in two 1 point steps. Step 1: Switch 1 is in open position and we connect Switch 2 to ' A ' in order to read in the information bits during the 1st four shifts. In step 2, Switch 1 is in closed position and we connect Switch 2 to ' B ' in order to read in the encoded bits in the next three shifts.

No, the answer is incorrect.
Score: 0
Accepted Answers:
$g(x)=x^{3}+x+1$

