


Accepted Answers: 0.00008	
5) Consider a linear block code over GF(11) with blocklength n = 10, satisfying the following two constraints: 1 pa	oint
$\sum_{i=0}^{g} ic_i = 0 \text{ calculated (mod 11) and } \sum_{i=0}^{g} (10-i)c_i = 0 \text{ calculated (mod 11)}$	
The minimum distance of this code is	
0 0 1 2 2 3	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
6) Let C be a binary perfect code of block length n with minimum distance 7. A possible value of n can be 1 po	oint
15 21 23 33	
No, the answer is incorrect. Score: 0	
Accepted Answers: 23	
The Let r_H denote the code rate for the binary Hamming code. The $\lim_{k \to \infty} r_H$ is given by	oint
0 0.5 0.5 1.0 Infinity	
No, the answer is incorrect. Score: 0	
Accepted Answers: 1.0	
8) The next-generation spacecraft to Mars, Mangalyan X,would be sending color photographs over a binary symmetric 1 postellite channel that has a reliability of 0.999 and is subject to randomly scattered noise. The spacecraft creates photographs using pixels of 128 different colors. Thus each color is a codeword. The space mission would like the probability of a pixel in the eceived image being assigned an incorrect color to be less than 0.0001. The parameters (n, k, d*) of the most efficient linear contact could be used by the spacecraft would be	
(15, 7, 3)	
(11, 7, 3)	
(31,11, 5) (15, 11, 5)	
No, the answer is incorrect.	
Score: 0 Accepted Answers:	
(11, 7, 3)	
9) The next-generation spacecraft to Mars, Mangalyan X,would be sending color photographs over a binary symmetric 1 postellite channel that has a reliability of 0.999 and is subject to randomly scattered noise. The spacecraft creates photographs using pixels of 128 different colors. Thus each color is a codeword. The space mission would like the probability of a pixel in the eceived image being assigned an incorrect color to be less than 0.0001. The parameters (n, k, d*) of the most efficient linear color to be used by the spacecraft would be	
(15, 7, 3)	
(11, 7, 3)	
(31,11, 5)	
(15, 11, 5)	

