Course outline
How to access the portal
Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Systematic Codes,
Error Detections and
Correction
Erasure and Errors,
Standard Array and
Syndrome Decoding
- Probability of Error,
Coding Gain and
Hamming Bound
- Hamming Codes,
LDPC Codes and
MDS Codes
Quiz : Assignment 6

Week 7
Week 8
Week 9
Week 10
Week 11
Week 12
Additional Lectures

Assignment 6

The due date for submitting this assignment has passed.
Due on 2018-09-12, 23:59 IST.
As per our records you have not submitted this assignment.

1) Two $k x n$ matrices generate equivalent linear (n, k) codes over $G F(q)$ if one matrix can be obtained from the other by 1 point

Permutation of rows
Addition of a scalar multiple of one row to another

- Permutation of columns

OAll of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
All of the above
2) A generator matrix can be reduced to its Systematic Form of the type $G=[I \mid P]$ where
\boldsymbol{I} is a $k \times k$ identity matrix and \boldsymbol{P} is a $k \times k$ matrixI is a $k \times k$ identity matrix and \boldsymbol{P} is a $k \times(n-k)$ matrix
\boldsymbol{I} is a $n \times k$ identity matrix and \boldsymbol{P} is a $k \times(n-k)$ matrix
I is a $n \times n$ identity matrix and P is a $n \times(n-k)$ matrix
No, the answer is incorrect.
Score: 0
Accepted Answers:
I is a $k \times k$ identity matrix and P is a $k \times(n-k)$ matrix
3)

Consider a (7, 4) code with $\boldsymbol{G}=\left[\begin{array}{lllllll}1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1\end{array}\right]$. Choose the option which does not list a valid co
0001101
0110100

- 1110000

1111111
No, the answer is incorrect
Score: 0
Accepted Answers:
1110000
4) Consider the $(23,12,7)$ binary code. If it is used over a binary symmetric channel (BSC) with probability of bit error $p \mathbf{1}$ point $=0.01$, the word error will be approximately

Accepted Answers:
0.00008
5) Consider a linear block code over GF(11) with blocklength $n=10$, satisfying the following two constraints

The minimum distance of this code is
$\bigcirc 0$
-1
O 2
-3
No, the answer is incorrect.
Score: 0
Accepted Answers:
1
6) Let C be a binary perfect code of block length n with minimum distance 7. A possible value of n can be

No, the answer is incorrect.
Score: 0
Accepted Answers
23
${ }^{\text {7) }}$ Let r_{H} denote the code rate for the binary Hamming code. The $\lim _{k \rightarrow \infty} r_{H}$ is given by

- 0.5
- 1.0
-Infinity
No, the answer is incorrect.
Score: 0
Accepted Answers:
1.0

8) The next-generation spacecraft to Mars, Mangalyan X,would be sending color photographs over a binary symmetric 1 point satellite channel that has a reliability of 0.999 and is subject to randomly scattered noise. The spacecraft creates photographs using pixels of 128 different colors. Thus each color is a codeword. The space mission would like the probability of a pixel in the received image being assigned an incorrect color to be less than 0.0001 . The parameters ($\mathrm{n}, \mathrm{k}, \mathrm{d}^{\star}$) of the most efficient linear code that could be used by the spacecraft would be$(15,7,3)$(11, 7, 3)$(31,11,5)$$(15,11,5)$
No, the answer is incorrect.
Score: 0
Accepted Answers:
(11, 7, 3)
9) The next-generation spacecraft to Mars, Mangalyan X,would be sending color photographs over a binary symmetric 1 point satellite channel that has a reliability of 0.999 and is subject to randomly scattered noise. The spacecraft creates photographs using pixels of 128 different colors. Thus each color is a codeword. The space mission would like the probability of a pixel in the received image being assigned an incorrect color to be less than 0.0001 . The parameters (n, k, d^{*}) of the most efficient linear code that could be used by the spacecraft would be$(15,7,3)$$(11,7,3)$(31,11, 5)$(15,11,5)$

No, the answer is incorrect.
Score: 0
Accepted Answers:
(11, 7, 3)
10) The generator matrix, $\boldsymbol{G}_{2}=\left[\begin{array}{cc}x_{1} & x_{2} \\ -x_{2} & x_{1}\end{array}\right]$, corresponds toreal orthogonal design

- generalized real orthogonal design
complex orthogonal design
generalized complex orthogonal design
No, the answer is incorrect.
Score: 0
Accepted Answers:
real orthogonal design

11) The code matrix of the Alamouti scheme is given by

$$
\begin{aligned}
\boldsymbol{X} & =\left[\begin{array}{cc}
x_{1} & x_{2} \\
-x_{2}^{*} & x_{1}^{*}
\end{array}\right] \\
\boldsymbol{X} & =\left[\begin{array}{cc}
x_{1} & x_{2} \\
-x_{2} & x_{1}
\end{array}\right] \\
\boldsymbol{X} & =\left[\begin{array}{cc}
x_{1} & x_{2} \\
x_{2}^{*} & x_{1}^{*}
\end{array}\right] \\
\boldsymbol{X} & =\left[\begin{array}{cc}
x_{1} & -x_{2} \\
-x_{2}^{*} & x_{1}^{*}
\end{array}\right]
\end{aligned}
$$

No, the answer is incorrect. Score: 0

Accepted Answers:
$\boldsymbol{X}=\left[\begin{array}{cc}x_{1} & x_{2} \\ -x_{2}^{*} & x_{1}^{*}\end{array}\right]$

Previous Page

