Courses » Information Theory, Coding and Cryptography

Announcements Course Ask a Question Progress Mentor FAQ

Unit 6 - Week

5

Course
 outline

How to access
the portal

Week 1

Week 2

Week 3
Week 4

Week 5

Introduction to Error Control Coding

Introduction to Galois Field

- Equivalent Codes, Generator Matrix and Parity Check Matrix

Quiz :
Assignment 5

Week 6

Week 7

Week 8

Week 9

Assignment 5

The due date for submitting this assignment has passed.
As per our records you have not submitted this
Due on 2018-09-12, 23:59 IST. assignment.

1) A linear code has the following properties 1 pointThe sum of two codewords belonging to the code is also a codeword belonging to the codeThe all-zero codeword is always a codeword

- The minimum Hamming distance between two codewords of a linear code is equal to the minimum weight of any non-zero codeword, i.e., $d^{*}=w^{\star}$

All of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
All of the above
2) Which statement of incorrect about Galois Fields

1 pointThe number of elements must be a power of primeTwo Galois Fields with the same number of elements are isomorphic

Every Galois Field has at least one element α, called a primitive element, such that all other elements (except 0) can be expressed as a power of α.
If p is a prime number and α is a primitive element, then with $\alpha^{p}=1$
No, the answer is incorrect.
Score: 0
Accepted Answers:
If p is a prime number and α is a primitive element, then with $\alpha^{p}=1$ 3) Consider the generator matrix $G=\left[\begin{array}{lllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1\end{array}\right]$. The (n, k) are 1 point © 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs - $\quad \sqrt{G_{+}+}$

National Programme on Technology Enhanced Learning

Lectures

$(7,1)$No, the answer is incorrect.
Score: 0
Accepted Answers:
$(7,3)$
4)

1 point
Using the Hamming code given by $G=\left[\begin{array}{lllllll}1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1\end{array}\right]$, upon encodeing the
input message vectors $m=1010$ we obtain the codeword0110010111001010100101110011
No, the answer is incorrect.
Score: 0
Accepted Answers:
1110010
5) How many errors can be corrected using the $(15,11)$ linear block codewhose parity check 1 point matrix is given below

No, the answer is incorrect.
Score: 0
Accepted Answers:
1
${ }^{6)}$ The Hamming weight of the vector $[\leqslant 000 \leftrightarrow \vee 0 \wedge 0 \vee \vee]$ is
1 point

No, the answer is incorrect.
Score: 0
Accepted Answers:
7
7) The generator matrix for the binary repetition code of length 5 is$G=\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0\end{array}\right]$$G=\left[\begin{array}{lllll}1 & 0 & 1 & 0 & 1\end{array}\right]$$\mathrm{G}=\left[\begin{array}{lllll}0 & 1 & 0 & 1 & 0\end{array}\right]$$G=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$G=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]$
8) Let $u=\left[u_{1}, u_{2}, \cdots, u_{n}\right], v=\left[v_{1}, v_{2}, \cdots, v_{n}\right]$ and $w=\left[w_{1}, w_{2}, \cdots, w_{n}\right]$ be binary

1 point n-tuples. Which of the following is true:$d(u, v)=w(u+v)$$d(u, v) \leq d(u, w)+d(w, v)$$w(u+v) \geq w(u)-w(v)$All of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
All of the above
9) Let G1, G2be the generator matrices for two linear codes ($n 1, k$) and ($n 2, k$) respectively.

1 point Then, the parameters (n, k) for the code with $G=[G 1 \mid G 2]$ will be$\left(\left(n_{1}+n_{2}\right), k\right)$$\left(\min \left(n_{1}, n_{2}\right), k\right)$$\left(\max \left(\mathrm{n}_{1}, \mathrm{n}_{2}\right), k\right)$$\left(\left(n_{1}+n_{2}\right), 2 k\right)$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$\left(\left(n_{1}+n_{2}\right), k\right)$
10Suppose C is a binary linear code. The code obtained by adding an overall parity check bit 1 point to C will be aNon linear codeLinear codeSystematic codeNone of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
Linear code

