

Funded by

Information Theory, Coding and Cryptography - ...

Lectures	(7, 1)
	No, the answer is incorrect.
	Score: 0
	Accepted Answers:
	(7, 3)
	4) 1 point
	$\begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}$
	Using the Hamming code given by $G = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$ upon encodeing the
	input message vectors $m = 1010$ we obtain the codeword
	0110010
	1110010
	0 1010010
	0 1110011
	No, the answer is incorrect.
	Score: 0
	Accepted Answers:
	1110010
	5) How many errors can be corrected using the (15, 11) linear block codewhose parity check 1 point
	matrix is given below
	[101010101010101]
	$H = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1$
	[· · · · · · · · · · · · · · · · · · ·
	Ο ο
	0 1
	3
	No, the answer is incorrect.
	Score: 0
	Accepted Answers:
	1
	⁶⁾ The Hamming weight of the vector [♦ 0 0 ◊♣♥ 0 ♠ 0 ◊♥] is 1 point
	5
	6
	7
	0 8
	No, the answer is incorrect.
	Score: 0
	Accepted Answers:
	7
	7) The generator matrix for the binary repetition code of length 5 is 1 point

Information Theory, Coding and Cryptography - ...

G = [1 0 1 0 1] G = [0 1 0 1 0] G = [0 1 0 1 0] G = [1 1 1 1 1] No, the answer is incorrect. Score: 0 Accepted Answers: G = [1 1 1 1 1] 8) Let u = [u_1, u_2,, u_n], v = [v_1, v_2,, v_n] and w = [w_1, w_2,, w_n] be binary n-tuples. Which of the following is true: d(u, v) = w(u + v) d(u, v) = w(u + v) d(u, v) $\leq d(u, w) + d(w, v)$ w(u + v) $\geq w(u) - w(v)$ All of the above No, the answer is incorrect. Score: 0 Accepted Answers: All of the above 9) Let G1, G2be the generator matrices for two linear codes (n1, k) and (n2, k) respectively. Then, the parameters (n, k) for the code with G = [G1 G2] will be ((n_1+n_2), k) (min(n_1, n_2), k)
G = [0 1 0 1 0] G = [1 1 1 1 1] No, the answer is incorrect. Score: 0 Accepted Answers: G = [1 1 1 1 1] 8) Let u = [u_1, u_2,, u_n], v = [v_1, v_2,, v_n] and w = [w_1, w_2,, w_n] be binary n-tuples. Which of the following is true: d(u, v) = w(u + v) d(u, v) ≤ d(u, w) + d(w, v) w(u + v) ≥ w(u) - w(v) All of the above No, the answer is incorrect. Score: 0 Accepted Answers: All of the above 9) Let G1, G2be the generator matrices for two linear codes (n1, k) and (n2, k) respectively. Then, the parameters (n, k) for the code with G = [G1 G2] will be ((n_1+n_2), k) (min(n_1, n_2), k)
G = [1 1 1 1 1] No, the answer is incorrect. Score: 0 Accepted Answers: G = [1 1 1 1 1] 8) Let u = [u ₁ , u ₂ ,, u _n], v = [v ₁ , v ₂ ,, v _n] and w = [w ₁ , w ₂ ,, w _n] be binary n-tuples. Which of the following is true: d(u, v) = w(u + v) d(u, v) ≤ d(u, w) + d(w, v) w(u + v) ≥ w(u) - w(v) All of the above No, the answer is incorrect. Score: 0 Accepted Answers: All of the above 9) Let G1, G2be the generator matrices for two linear codes (n1, k) and (n2, k) respectively. Then, the parameters (n, k) for the code with G = [G1 G2] will be ((n ₁ +n ₂), k) (min(n ₁ , n ₂), k)
No, the answer is incorrect. Score: 0 Accepted Answers: $G = [1 \ 1 \ 1 \ 1 \ 1]$ 8) Let $u = [u_1, u_2, \dots, u_n], v = [v_1, v_2, \dots, v_n]$ and $w = [w_1, w_2, \dots, w_n]$ be binary n-tuples. Which of the following is true: d(u, v) = w(u + v) d(u, v) = w(u + v) $d(u, v) \le d(u, w) + d(w, v)$ $w(u + v) \ge w(u) - w(v)$ All of the above No, the answer is incorrect. Score: 0 Accepted Answers: All of the above 9) Let G1, G2be the generator matrices for two linear codes (n1, k) and (n2, k) respectively. Then, the parameters (n, k) for the code with G = [G1 G2] will be $((n_1+n_2), k)$ $(min(n_1, n_2), k)$
Score: 0 Accepted Answers: $G = [1 \ 1 \ 1 \ 1 \ 1]$ 8) Let $u = [u_1, u_2, \dots, u_n], v = [v_1, v_2, \dots, v_n]$ and $w = [w_1, w_2, \dots, w_n]$ be binary n-tuples. Which of the following is true: d(u, v) = w(u + v) $d(u, v) \le d(u, w) + d(w, v)$ $w(u + v) \ge w(u) - w(v)$ All of the above No, the answer is incorrect. Score: 0 Accepted Answers: All of the above 9) Let G1, G2be the generator matrices for two linear codes (n1, k) and (n2, k) respectively. Then, the parameters (n, k) for the code with G = [G1 G2] will be $((n_1+n_2), k)$ $(min(n_1, n_2), k)$
Accepted Answers: $G = [1 \ 1 \ 1 \ 1 \ 1]$ 8) Let $u = [u_1, u_2, \dots, u_n], v = [v_1, v_2, \dots, v_n]$ and $w = [w_1, w_2, \dots, w_n]$ be binary n-tuples. Which of the following is true: d(u, v) = w(u + v) $d(u, v) \le d(u, w) + d(w, v)$ $w(u + v) \ge w(u) - w(v)$ All of the above No, the answer is incorrect. Score: 0 Accepted Answers: All of the above 9) Let G1, G2be the generator matrices for two linear codes (n1, k) and (n2, k) respectively. Then, the parameters (n, k) for the code with G = [G1 G2] will be $((n_1+n_2), k)$ $(min(n_1, n_2), k)$
8) Let $u = [u_1, u_2, \dots, u_n], v = [v_1, v_2, \dots, v_n]$ and $w = [w_1, w_2, \dots, w_n]$ be binary n-tuples. Which of the following is true: $d(u, v) = w(u + v)$ $d(u, v) \le d(u, w) + d(w, v)$ $w(u + v) \ge w(u) - w(v)$ All of the above No, the answer is incorrect. Score: 0 Accepted Answers: All of the above 9) Let G1, G2be the generator matrices for two linear codes (n1, k) and (n2, k) respectively. Then, the parameters (n, k) for the code with G = [G1 G2] will be $((n_1+n_2), k)$ $(min(n_1, n_2), k)$
d(u, v) = w(u + v) d(u, v) ≤ d(u, w) + d(w, v) w(u + v) ≥ w(u) - w(v) All of the above No, the answer is incorrect. Score: 0 Accepted Answers: All of the above 9) Let G1, G2be the generator matrices for two linear codes (n1, k) and (n2, k) respectively. Then, the parameters (n, k) for the code with G = [G1 G2] will be ((n ₁ +n ₂), k) (min(n ₁ , n ₂), k)
w(u + v) ≥ w(u) - w(v) All of the above No, the answer is incorrect. Score: 0 Accepted Answers: All of the above 9) Let G1, G2be the generator matrices for two linear codes (n1, k) and (n2, k) respectively. Then, the parameters (n, k) for the code with G = [G1 G2] will be ((n ₁ +n ₂), k) (min(n ₁ , n ₂), k)
All of the above No, the answer is incorrect. Score: 0 Accepted Answers: All of the above 9) Let G1, G2be the generator matrices for two linear codes (n1, k) and (n2, k) respectively. Then, the parameters (n, k) for the code with G = [G1 G2] will be ((n_1+n_2) , k) ($(min(n_1, n_2)$, k)
No, the answer is incorrect. Score: 0 Accepted Answers: All of the above 9) Let G1, G2be the generator matrices for two linear codes (n1, k) and (n2, k) respectively. Then, the parameters (n, k) for the code with G = [G1 G2] will be ((n_1+n_2), k) (min(n_1, n_2), k)
Score: 0 Accepted Answers: All of the above 9) Let G1, G2be the generator matrices for two linear codes (n1, k) and (n2, k) respectively. Then, the parameters (n, k) for the code with G = [G1 G2] will be ((n_1+n_2) , k) ($(min(n_1, n_2)$, k))
Accepted Answers: All of the above 9) Let G1, G2be the generator matrices for two linear codes (n1, k) and (n2, k) respectively. Then, the parameters (n, k) for the code with G = [G1 G2] will be ((n_1+n_2) , k) ($min(n_1, n_2)$, k)
9) Let G1, G2be the generator matrices for two linear codes (n1, k) and (n2, k) respectively. Then, the parameters (n, k) for the code with G = [G1 G2] will be $((n_1+n_2), k)$ $(min(n_1, n_2), k)$
$(min(n_1, n_2), k)$
$(\cdots,(\cdot,1),\cdot,2)$
$(\max(n_1, n_2), k)$
$((n_1+n_2), 2k)$
No, the answer is incorrect. Score: 0
Accepted Answers: ((n ₁ +n ₂), k)
10 $\mbox{Suppose C}$ is a binary linear code. The code obtained by adding an overall parity check \mbox{I} to C will be a
Non linear code
Linear code
Systematic code
None of the above
No, the answer is incorrect.
Score: U
Linear code

Information Theory, Coding and Cryptography - ...