

Funded by

In association with

Information Theory, Coding and Cryptography - ...

Go Mi

vernment of India	4) Channel capacity is a measure of	1 point
nistry of Human Resource De	Entropy	
	Differential Entropy	
	Lower-bound on the maximum rate of information transfer	
	The maximum rate at which information can be reliably transmitted over achannel	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: The maximum rate at which information can be reliably transmitted over achannel	
	5) The capacity of a binary symmetric channel, given H(p) is the binary entropy function, is	1 point
	● 1-H(p)	
	─ H(p) – 1	
	$1 - H(p)^2$	
	— н(р)	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: 1–H(p)	
	6) Suppose I have two parallel independent BSCs with crossover probabilities p and q. If I choose to send two bits at a time over these parallel channels, my net capacity will be	1 point
	1 – H(p) – H(q)	
	2 – H(p) – H(q)	
	H(p) – H(q)	
	H(p) + H(q)	
	No, the answer is incorrect.	
	Score: 0	
	Accepted Answers: 2 - H(p) - H(q)	
	7) Consider the binary channel shown below. Let the a priori probabilities of sending the binary symbols be p0 and p1, where p0 + p1 = 1. Then thea posteriori probability $P(X = 1 Y = 1)$	1 point 1) is
	$p_0 0 \underbrace{1-p}_{p_1} 0 0 1-p_{q_1} 0 0 0 0 0 0 0 0 0 $	
	((1 – p)(1 – p0)) / (pp0 + (1 – q) (1 – p0))	
	((1-q)(1-p)) / (pp0 + (1-q) (1-p))	
	((1 – q)(1 – p0)) / (pp0 + (1 – q) (1 – p0))	
	((1-p)(1-q)) / (pp0 + (1-q) (1-p0))	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: ((1 - q)(1 - p0)) / (pp0 + (1 - q) (1 - p0))	
	8) The capacity of the channel given by is	0 points

Information Theory, Coding and Cryptography - ...

$\boldsymbol{P} = \begin{bmatrix} \frac{1-p}{2} & \frac{1-p}{2} & \frac{p}{2} & \frac{p}{2} \\ \frac{p}{2} & \frac{p}{2} & \frac{1-p}{2} & \frac{1-p}{2} \end{bmatrix}$
log 4 + plog(p) + $(1 - p)\log(1 - p)$
plog(p) + (1 - p)log(1 - p)
4(plog(p) + $(1 - p)\log(1 - p)$)
log 4 + $(1 - p)\log(p)$ + $p\log(1 - p)$
No, the answer is incorrect. Score: 0
Accepted Answers: log 4 + plog(p) + (1 - p)log(1 - p)
9) A telephone channel has a bandwidth of 3000 Hz and the SNR = 20 dB. The channel 1 point capacity is (roughly)
10 kb/s
20 kb/s
30 kb/s
40 kb/s
No, the answer is incorrect. Score: 0
Accepted Answers: 20 kb/s
10)Suppose a TV displays 30 frames/second. There are approximately 2 X 10 ⁵ pixels per 1 <i>point</i> frame, each pixel requiring 16 bits for colour display. Assuming an SNR of 25 dB the bandwidth required to support the transmission of the TV video signal would be
10.50 MHz
11.05 MHz
11.40 MHz
11.55 MHz
No, the answer is incorrect. Score: 0
Accepted Answers: 11.55 MHz
Previous Page End

Information Theory, Coding and Cryptography - ...