```
Courses » Information Theory, Coding and Cryptography
```

Announcements Course Ask a Question Progress Mentor FAQ

Unit 4 - Week

Course
 outline

How to access
the portal

Week 1

Week 2

Week 3
Channel
Models and
Channel
Capacity

- Noisy Channel

Coding
Theorem
Quiz :
Assignment 3

Week 4

Week 5

Week 6
Week 7

Week 8

Week 9

Week 10
Week 11

Assignment 3

The due date for submitting this assignment has passed.
As per our records you have not submitted this
Due on 2018-09-05, 23:59 IST. assignment.

1) In an ideal channel, the crossover probability, p, is

1 point
00.25
0.5

No, the answer is incorrect.
Score: 0
Accepted Answers:
0
2) Relay channels can use 1 pointAmplify-and-Forward (AF) schemeDecode-and-Forward (DF) schemeHybrid of AF and DFAll of these
No, the answer is incorrect.
Score: 0
Accepted Answers:
All of these
3) For a BSC with $0.5<p<1$, the capacity

1 point increases with increasing pdecrease with increasing p
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -
NPTEL
National Programme on Technology Enhanced Learning
4) Channel capacity is a measure of

1 point

Entropy

Differential EntropyLower-bound on the maximum rate of information transferThe maximum rate at which information can be reliably transmitted over achannel
No, the answer is incorrect.
Score: 0
Accepted Answers:
The maximum rate at which information can be reliably transmitted over achannel
5) The capacity of a binary symmetric channel, given $\mathrm{H}(\mathrm{p})$ is the binary entropy function, is

1 point$1-H(p)$$H(p)-1$$1-H(p)^{2}$$H(p)$
No, the answer is incorrect.
Score: 0
Accepted Answers:
1-H(p)
6) Suppose I have two parallel independent BSCs with crossover probabilities p and q. If I

1 point choose to send two bits at a time over these parallel channels, my net capacity will be

$$
1-H(p)-H(q)
$$

$$
2-H(p)-H(q)
$$$H(p)-H(q)$$H(p)+H(q)$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$2-H(p)-H(q)$
7) Consider the binary channel shown below. Let the a priori probabilities of sending the 1 point binary symbols be p 0 and p 1 , where $\mathrm{p} 0+\mathrm{p} 1=1$. Then thea posteriori probability $\mathrm{P}(\mathrm{X}=1 \mid \mathrm{Y}=1)$ is
p_{0}
p_{1}

$$
((1-p)(1-p 0)) /(p p 0+(1-q)(1-p 0))
$$$((1-q)(1-p)) /(p p 0+(1-q)(1-p))$

$-((1-q)(1-p 0)) /(p p 0+(1-q)(1-p 0))$$((1-p)(1-q)) /(p p 0+(1-q)(1-p 0))$
No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
((1-q)(1-p 0)) /(p p 0+(1-q)(1-p 0))
$$

8) The capacity of the channel given by is

$$
\begin{aligned}
& \boldsymbol{P}= {\left[\begin{array}{cccc}
\frac{1-p}{2} & \frac{1-p}{2} & \frac{p}{2} & \frac{p}{2} \\
\frac{p}{2} & \frac{p}{2} & \frac{1-p}{2} & \frac{1-p}{2}
\end{array}\right] } \\
& \log 4+\operatorname{plog}(p)+(1-p) \log (1-p) \\
& \operatorname{plog}(p)+(1-p) \log (1-p) \\
& 4(\operatorname{plog}(p)+(1-p) \log (1-p)) \\
& \log 4+(1-p) \log (p)+\operatorname{plog}(1-p)
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\log 4+\operatorname{plog}(p)+(1-p) \log (1-p)$
9) A telephone channel has a bandwidth of 3000 Hz and the $\mathrm{SNR}=20 \mathrm{~dB}$. The channel 1 point capacity is (roughly)$10 \mathrm{~kb} / \mathrm{s}$$20 \mathrm{~kb} / \mathrm{s}$30 kb/s40 kb/s
No, the answer is incorrect.
Score: 0
Accepted Answers:
20 kb/s
10Suppose a TV displays 30 frames/second. There are approximately 2×10^{5} pixels per
1 point frame, each pixel requiring 16 bits for colour display. Assuming an SNR of 25 dB the bandwidth required to support the transmission of the TV video signal would be10.50 MHz11.05 MHz11.40 MHz11.55 MHz

No, the answer is incorrect.
Score: 0
Accepted Answers:
11.55 MHz

Previous Page

