reviewer3@nptel.iitm.ac.in ▼

Courses » Information Theory, Coding and Cryptography

Ask a Question Announcements FAQ Course **Progress** Mentor

Unit 13 - Week **12**

Course outline	Assignment 12	
	The due date for submitting this assignment has pa	ssed.
How to access the portal	As per our records you have not submitted this assignment.	Due on 2018-10-24, 23:59 IST.
Week 1	1) The number of one-to-one affine ciphers that can be constructed for the English alphabet is 1 point	
Week 2	255	
Week 3	312	
Week 4	512 616	
Week 5	No, the answer is incorrect.	
Week 6	Score: 0 Accepted Answers:	
Week 7	312	
Week 8	 The total number of unique keys possible for the Play is approximately given by 	fair cipher (including the trivial cases) 1 poi
Week 9	224	
Week 10	264	
Week 11	284	
Week 12	2104	
Introduction to	No, the answer is incorrect. Score: 0	
Cryptography : Symmetric Key and	Accepted Answers: 284	
Asymmetric Key Cryptography	3) Consider RC4 with the internal state, S, and the two states are	indices i and j. The number of internal 1 poi
Some	21700	

A project of

Funded by

Additional Lectures	Accepted Answers: 2 ¹⁷⁰⁰
	4) If we use the prime numbers 29 and 61 to generate keys using the RSA algorithm, then a 1 point possible choice of the public key could be
	O 7
	9
	O 11
	O 13
	No, the answer is incorrect. Score: 0
	Accepted Answers: 11
	5) The ciphertext obtained for message $M = 2$ when using RSA to perform encryption with $A = 1$ point 17, $B = 31$ and public key $E = 7$ is
	64
	128
	162
	212
	No, the answer is incorrect. Score: 0
	Accepted Answers: 128
	6) Suppose A and B use the Diffie-Hellman key exchange protocol with a common prime $P = 1$ point 71 and the primitive root = 7.If user A has private key $K_A = 5$ and user B has private key $K_B = 12$, then the shared secret key is
	30
	4 0
	42
	No, the answer is incorrect. Score: 0
	Accepted Answers: 30
	7) Suppose the point (a,7) lies on the elliptic curve $y^2 = x^3 + 11x + 19 \pmod{167}$, then the value of a is
	O 0
	1
	O 2
	4
	No, the answer is incorrect. Score: 0
	Accepted Answers:
	2
	8) Suppose we want to test the security of character + x encrypting technique in which each 1 point

alphabet of the plaintext is shifted by x to produce the ciphertext. Assuming it takes a computer 1 ms to check out one value of the shift, how soon can this code be broken
20 ms 25 ms 35 ms 40 ms
No, the answer is incorrect. Score: 0 Accepted Answers: 25 ms 9) Upon decoding the Vigenère ciphertext:QQNLMEPQBVLBI using the key 'IIT 'we obtain 1 point
the plaintext as IITDELHIINDIA IITPATNABIHAR NITKURUKSHETRA IITMANDIINDIA
No, the answer is incorrect. Score: 0 Accepted Answers: IITDELHIINDIA
10) Consider the elliptic curve given by E: $y^2 = x^3 + 17$ over the real number field with points P 1 points = $(-1, 4)$ and Q = $(2, 5) \in E$. Then, P - Q is given by (3, 27) (8, 23) (4, 19) (18, 3)
No, the answer is incorrect. Score: 0 Accepted Answers: (8, 23)
Previous Page End