Courses » Information Theory, Coding and Cryptography

Announcements Course Ask a Question Progress Mentor FAQ

Unit 12 - Week

11

Course outline

How to access
the portal

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

Week 9

Week 10

Week 11

Introduction to
Space Time Block Codes
(STBC)
Real
Orthogonal
Design and
Complex
Orthogonal
Design

Assignment 11

The due date for submitting this assignment has passed.
As per our records you have not submitted this
Due on 2018-10-17, 23:59 IST. assignment.

1) The Alamouti code is given by 1 point

$$
\boldsymbol{X}=\left[\begin{array}{ll}
x_{1} & x_{2} \\
\stackrel{x_{2}}{*} & x_{1}^{*}
\end{array}\right]
$$

$$
\boldsymbol{X}=\left[\begin{array}{cc}
x_{1} & x_{2} \\
-x_{2} & x_{1}
\end{array}\right]
$$

$$
\boldsymbol{X}=\left[\begin{array}{cc}
x_{1} & x_{2} \\
-x_{2} & x_{1}
\end{array}\right]
$$

$$
\boldsymbol{X}=\left[\begin{array}{cc}
x_{1} & x_{2} \\
-x_{2}^{*} & x_{1}^{*}
\end{array}\right]
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\boldsymbol{X}=\left[\begin{array}{cc}x_{1} & x_{2} \\ -x_{2}^{*} & x_{1}^{*}\end{array}\right]$
2) Suppose we have a 2×1 wireless system that employs Alamouti code and uses QPSK 1 point modulation with Gray coding. If the input bit-stream is $101010111001 \ldots$ then the transmitted symbols from antenna 2 will be

$$
\begin{aligned}
& s_{1} s_{3}^{*} s_{3} s_{2}^{*} s_{1}-s_{3}^{*} \\
& s_{2} s_{3}^{*} s_{3}-s_{1}^{*} s_{1} s_{3}^{*} \\
& s_{3} s_{3}^{*} s_{3} s_{2}^{*} s_{1} s_{3}^{*} \\
& s_{2} s_{3}^{*} s_{3} s_{2}^{*} s_{1} s_{2}
\end{aligned}
$$

© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -

National Programme on Technology Enhanced Learning

Funded by

Quiz :
Assignment 11

Week 12

Additional Lectures

Consider the code given by $\boldsymbol{G}=\left[\begin{array}{cccc}x_{1} & -x_{2}^{*} & x_{3}^{*} & 0 \\ x_{2} & x_{1}^{*} & 0 & x_{3}^{*} \\ x_{3} & 0 & -x_{1}^{*} & -x_{2}^{*} \\ 0 & x_{3} & x_{2} & -x_{1}\end{array}\right]$. The values of N, K and T are
$N=4, K=2, T=4$
$N=4, K=3, T=3$
$N=3, K=3, T=4$
$N=4, K=3, T=4$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$N=4, K=3, T=4$
4) Consider the code given by $\boldsymbol{G}=\left[\begin{array}{ccc}x_{1} & x_{3} & x_{2} \\ -x_{2} & -x_{4} & x_{1} \\ -x_{3} & x_{1} & x_{4} \\ -x_{4} & x_{2} & -x_{3}\end{array}\right]$. Which of the following
statements is corectIt is orthogonalit is delay optimal$N=3, T=4$All of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
All of the above
5) The rank criteria suggests that in order to achieve maximum diversityThe matrix $\mathrm{A}\left(\mathrm{C}^{\mathrm{i}}, \mathrm{Cl}^{\mathrm{j}}\right)$ should be of full rank for any two codewords, $\mathrm{C}^{\mathrm{i}} \neq \mathrm{C}^{\mathrm{j}}$The matrix $A\left(C^{i}, C^{i}\right)$ should be orthogonal for any two codewords, $C^{i} \neq \mathrm{C}^{\mathrm{j}}$The matrix $A\left(C^{i}, C^{j}\right)$ should be unitary for any two codewords, $\mathrm{C}^{i} \neq \mathrm{C}^{j}$None of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
The matrix $A\left(C^{i}, C^{j}\right)$ should be of full rank for any two codewords, $C^{i} \neq C^{j}$
6) The determinant criteria suggests that in order to achieve maximum coding gain

1 point

The maximum determinant of the matrix $A\left(C^{i}, C^{j}\right)$ should be minimized for any two codewords, $\mathrm{C}^{\mathrm{i}} \neq \mathrm{C}^{\mathrm{j}}$

The minimum determinant of the matrix $A\left(C^{i}, C^{j}\right)$ should be maximized for any two codewords, $\mathrm{C}^{\mathrm{i}} \neq \mathrm{C}^{\mathrm{j}}$

The minimum determinant of the matrix $A\left(C^{i}, C^{j}\right)$ should be minimized for any two codewords, $\mathrm{C}^{\mathrm{i}} \neq \mathrm{C}^{\mathrm{j}}$None of the above

No, the answer is incorrect.
Score: 0
Accepted Answers:
The minimum determinant of the matrix $A\left(C^{i}, C^{j}\right)$ should be maximized for any two codewords, $C^{i} \neq C^{j}$
7) Orthogonal Space-time block codes provideSimple decodingMaximum diversityBoth a. and b.None of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
Both a. and b.
8) A real orthogonal design of size N is an $N X N$ generator matrix such that
$\boldsymbol{G}^{T} \boldsymbol{G}=\left(\sum_{i=1}^{N} x_{i}\right) \boldsymbol{I}_{N}$
$\boldsymbol{G}^{T} \boldsymbol{G}=\left(\sum_{i=1}^{N}\left|x_{i}\right|\right) \boldsymbol{I}_{N}$
$\boldsymbol{G}^{T} \boldsymbol{G}=\left(\sum_{i=1}^{N} x_{i}^{2}\right) I_{N}$None of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
$\boldsymbol{G}^{T} \boldsymbol{G}=\left(\sum_{i=1}^{N} x_{i}^{2}\right) \boldsymbol{I}_{N}$
9) A real orthogonal design exists if and only if N is equal toAll of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
All of the above

10
For $G_{434}=\left[\begin{array}{cccc}x_{1} & -x_{2}^{*} & -x_{3}^{*} & 0 \\ x_{2} & x_{1}^{*} & 0 & x_{3}^{*} \\ x_{3} & 0 & x_{1}^{*} & -x_{2}^{*} \\ 0 & -x_{3} & x_{2} & x_{1}\end{array}\right]$, the rate, R, is
$1 / 2$
2/3
3/4

No, the answer is incorrect.
Score: 0
Accepted Answers:
3/4

Previous Page

