Courses » Information Theory, Coding and Cryptography

Announcements Course Ask a Question Progress Mentor FAQ

Unit 10 - Week

Course Outline
How to access the portal
Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8
Week 9
Codes
Introduction to
Convolutional
Codes
Trellis Codes:
Generator
Polynomial
Matrix and
Encoding using
Trellis

Assignment 9

The due date for submitting this assignment has passed.
As per our records you have not submitted this
Due on 2018-10-03, 23:59 IST. assignment.

1) The constraint length of a shift register encoder is defined as

1 pointThe number of input symbols in one information framThe number of symbols it can store in its memoryThe number of symbols in one codeword frameNone of the above

No, the answer is incorrect.
Score: 0
Accepted Answers:
The number of symbols it can store in its memory
2) For a non-catastrophic convolutional code with generator polynomials g1(D), g2(D), .. 1 point $\mathrm{gn}_{0}(\mathrm{D})$, we have$\operatorname{GCD}\left[g 1(\mathrm{D}), \mathrm{g} 2(\mathrm{D}), \ldots, \mathrm{gn}_{0}(\mathrm{D})\right]=\mathrm{x}^{\mathrm{a}}$ for some aGCD[g1(D), g2(D), $\left.\ldots, \mathrm{gn}_{0}(\mathrm{D})\right]=1$both a . and bNone of the above

No, the answer is incorrect.
Score: 0
Accepted Answers:
both a. and b
3) The encoding operation for convolutional codes can be described as

1 point
$C(D)=I(D) \mathbf{G}^{\top}(D)$
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -
NPTEL
National Programme on Technology Enhanced Learning

In association with

Funded by

Week 11

Week 12

Additional Lectures
$C(D)=I(D) \mathbf{G}(D)$
4) The encoded bit stream corresponding to the input bit stream: $11110000 \ldots$ using the 1 point convolutional encoder given below is
$1111011110110001 \ldots$$1010010110110101 \ldots$$1000010010110000 \ldots$$1110010110110000 \ldots$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$1110010110110000 \ldots$
5) A message stream is encoded using the convolutional encoder given in the previous 1 point problem, and then transmitted. Let the received word (with errors) be r=1011110110011110 ... Then the transmitted sequence is$1111110110011100 \ldots$$1001111110111100 \ldots$1001111010111000 ..1001110010011100 ...
No, the answer is incorrect.
Score: 0
Accepted Answers:
$1001110010011100 \ldots$
6) In a Trellis diagram, the horizontal axis represents

1 pointContinuous timeDiscrete timeSymbol frequencySymbol duration
No, the answer is incorrect.
Score: 0
Accepted Answers:
Discrete time
7) The rate of the encoder with $G(D)=\left[\begin{array}{llll}D^{5}+D^{3}+1 & D^{4}+1 & D^{3}+1\end{array}\right]$

1 point$1 / 2$$1 / 3$
(1) $1 / 4$

- $2 / 3$

No, the answer is incorrect.
Score: 0
Accepted Answers:
1/3
8) Given $G(D)=\left[\begin{array}{ccc}1 & 0 & \frac{D^{2}}{1+D^{3}} \\ 0 & 1 & \frac{D}{1+D^{3}}\end{array}\right]$ the $H(D)$ will be$H(D)=\left[\begin{array}{lll}D^{2} & D & 1+D^{3}\end{array}\right]$$H(D)=\left[\begin{array}{lll}D & 1 & 1+D^{2}\end{array}\right]$$H(D)=\left[\begin{array}{lll}D^{3} & D^{2} & 1+D^{3}\end{array}\right]$

- $\mathbf{H}(\mathrm{D})=\left[\mathrm{D}^{2}\right.$
D $1+\mathrm{D}$]

No, the answer is incorrect.
Score: 0
Accepted Answers:
$H(D)=\left[\begin{array}{lll}D^{2} & D & 1+D^{3}\end{array}\right]$
9) The free distance, $d_{\text {free }}$, for the trellis with $T(D)=2 D^{6}+8 D^{8}+14 D^{10}+\ldots$ is

1 point
No, the answer is incorrect.
Score: 0
Accepted Answers:
6
10Consider the Turbo encoder for in 3GPP-LTE given below with the transfer function of the $\mathbf{1}$ point 8 -state constituent code for parallel concatenated convolutional code given by $G(D)=$
$=\left[\begin{array}{ll}1 & \frac{g_{1}(D)}{g_{0}(D)}\end{array}\right]$
where, $g 0(D)=1+D^{2}+D^{3}$ and $g 1(D)=1+D+D^{3}$. Let the interleaver be 'flip all bits'. The encoded the bit stream corresponding to the input $00110110 \ldots$ using this Turbo encoder will be
101010111110010101110101 ...$000011110010010101010001 \ldots$001010110110010101110001 ...$111010111100010101110011 \ldots$
No, the answer is incorrect.
Score: 0
Accepted Answers:
001010110110010101110001 ...Previous PageEnd

