Courses » Information Theory, Coding and Cryptography

Announcements Course Ask a Question Progress Mentor FAQ

Unit 1 - How to access the portal

Course outline

How to access
the portal
How to access
the home
page?
How to access the course
page?
How to access the MCQ, MSQ and
Programming assignments?

Quiz :
Assignment 0

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

Week 9

Assignment 0

The due date for submitting this assignment has passed.
As per our records you have not submitted this
Due on 2018-07-30, 23:59 IST. assignment.

1) For matrices A and B, pick the correct choice 1 point
$(\boldsymbol{A}+\boldsymbol{B})^{T}=\boldsymbol{A}^{T}+\boldsymbol{B}^{T}$$(a \mathbf{A})^{T}=a A^{T}$
(1) $(\boldsymbol{A B})^{T}=\boldsymbol{B}^{T} \boldsymbol{A}^{T}$All of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
All of the above
2) A matrix A is said to be invertible if there exists a matrix B such that

1 point
$B A=A B=I$
(1) $\boldsymbol{B}^{T}=\boldsymbol{A} \boldsymbol{B}^{T}$$\boldsymbol{B} \boldsymbol{A}{ }^{T}=\boldsymbol{I}$None of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
$B A=A B=I$
3) The inverse of a square matrix \boldsymbol{A} is denoted by \boldsymbol{A}^{-1} where

1 point$A^{-1} A^{-1}=I$
A $A^{-1}=I$
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -

Lectures

$A^{-1}=I$
4) The column rank of A is the

1 pointnumber of linearly dependent column vectors in the matrix Anumber of linearly independent column vectors in the matrix Anumber of linearly dependent row vectors in a matrix ANone of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
number of linearly independent column vectors in the matrix A
5) Hermitian of a matrix A is defined as

1 point$\boldsymbol{A}^{H}=(\mathbf{A})^{T}$
$\boldsymbol{A}^{H}=\left(\boldsymbol{A}^{-1}\right)^{T}$$A^{H}=\left(A^{*}\right)^{-1}$
$\boldsymbol{A}^{H}=\left(\boldsymbol{A}^{*}\right)^{T}$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$A^{H}=\left(A^{*}\right)^{T}$
6) For a unitary matrix U

1 point$U^{H} U=\boldsymbol{I}$The rows, as well as the columns, of U form an orthogonal setAll eigenvalues have absolute value 1All of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
All of the above
7) Let $X_{1}, X_{2}, \ldots, X_{n}$ be continuous random variables with cumulative 1 point distribution functions $F_{1}(x), F_{2}(x), \ldots, F_{n}(x)$ and with density functions $f_{1}(x)$, $f_{2}(x), \ldots, f_{n}(x)$ respectively. Then, these random variables are mutually independent if$F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=F_{1}(x) F_{2}(x) \ldots F_{n}(x)$$f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f_{1}(x) f_{2}(x) \ldots f_{n}(x)$Both a and bNone of the above

No, the answer is incorrect.
Score: 0
Accepted Answers:
Both a and b
8) The variance of a random variable X, with mean μ, is defined as$E\left[X^{2}\right]-(\mu)^{2}$$E\left[X^{2}\right]+(\mu)^{2}$$E\left[X^{2}\right]$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$E\left[X^{2}\right]-(\mu)^{2}$
9) The Gaussian distribution is given by

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x}, & \text { if } 0 \leq x<\infty \\
0, & \text { otherwise }
\end{array}\right. \\
& f(x)=\frac{x}{\sigma^{2}} e^{-x^{2} / 2 \sigma^{2}} \\
& f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}} \\
& f(x)=\left\{\begin{array}{cc}
\frac{1}{b-a}, & \text { if } a \leq x \leq b \\
0, & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

10)Which of the following is a reference book for this courseR. Bose, Information theory, coding and cryptography, McGraw-Hill, $3^{\text {rd }}$ Edition, 2016.

- T.M. Cover and J. A. Thomas, Elements of information theory, John Wiley \& Sons, 2012.
T. K. Moon, Error Correction Coding: Mathematical Methods and Algorithms, Wiley, 2005

All of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
All of the above

Previous Page

