PILL	reviewer3@)nptel.iitm.ac.		
Courses » Information Theory, Coding and Cryptography				
Jnit 1 - Ho access the		r FAQ		
Course outline	Assignment 0			
How to access the portal	The due date for submitting this assignment has passed.As per our records you have not submitted thisDue on 2018-07-30,assignment.Due on 2018-07-30,	23:59 IST.		
How to access the home page?	1) For matrices A and B, pick the correct choice $(A + B)^{T} = A^{T} + B^{T}$	1 poir		
How to access the course page?	$(A+B) = A + B^{T}$ $(aA)^{T} = aA^{T}$ $(AB)^{T} = B^{T}A^{T}$			
How to access the MCQ, MSQ and	All of the above			
Programming assignments?	No, the answer is incorrect. Score: 0 Accepted Answers:			
Quiz : Assignment 0	<i>All of the above</i>2) A matrix A is said to be invertible if there exists a matrix B such that	1 poir		
Week 1	$\mathbf{B}\mathbf{A} = \mathbf{A}\mathbf{B} = \mathbf{I}$	1 pon		
Week 2	BA - AB - T			
Week 3	$\bigcirc BA^T = I$			
Week 4	None of the above			
Week 5	No, the answer is incorrect. Score: 0			
Week 6	Accepted Answers:			
Week 7	BA = AB = I ³⁾ The inverse of a square matrix A is denoted by A ⁻¹ where	1 poin		
Week 8	• The inverse of a square matrix A is denoted by A ⁻¹ where $\mathbf{A}^{-1}\mathbf{A}^{-1} = \mathbf{I}$	1 0011		
Week 9	$ A^{-1}A^{-1} = I $			

NASSCOM[®] Funded by Information Theory, Coding and Cryptography - \ldots

Lectures	$AA^{-1} = I$	
ce De	4) The column rank of A is the	1 point
	number of linearly dependent column vectors in the matrix A	
	number of linearly independent column vectors in the matrix A	
	number of linearly dependent row vectors in a matrix A	
	None of the above	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: number of linearly independent column vectors in the matrix A	
	5) Hermitian of a matrix A is defined as	1 point
	$ A^{H} = (A)^{T} $	
	$ A^{H} = (A^{-1})^T $	
	$A^{H}=(A^{*})^{-1}$	
	$ A^{H} = (A^*)^T $	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: $A^{H}=(A^{*})^{T}$	
	6) For a unitary matrix U	1 point
	$\bigcirc U^H U = I$	
	The rows, as well as the columns, of U form an orthogonal set	
	All eigenvalues have absolute value 1	
	All of the above	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: All of the above	
	7) Let X_1, X_2, \ldots, X_n be continuous random variables with cumulative distribution functions $F_1(x), F_2(x), \ldots, F_n(x)$ and with density functions $f_1(x)$ $f_2(x), \ldots, f_n(x)$ respectively. Then, these random variables are mutually independent if	1 point <),
	• $F(x_1, x_2,, x_n) = F_1(x)F_2(x) \dots F_n(x)$	
	$f(x_1, x_2,, x_n) = f_1(x)f_2(x) \dots f_n(x)$	
	Both a and b	
	None of the above	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: Both a and b	
	8) The variance of a random variable X, with mean $\boldsymbol{\mu},$ is defined as	1 point
	E[X]- μ	

Information Theory, Coding and Cryptography - ...

 \bigcirc E[X²]– (µ)² E[X²]+ (µ)² E[X²] No, the answer is incorrect. Score: 0 **Accepted Answers:** $E[X^2] - (\mu)^2$ 9) The Gaussian distribution is given by $f(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } 0 \le x < \infty \\ 0, & \text{otherwise} \end{cases}$ $f(x) = \frac{x}{\sigma^2} e^{-x^2/2\sigma^2}$ $f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}$ $f(x) = \begin{cases} \frac{1}{b-a}, & \text{if } a \le x \le b\\ 0, & \text{otherwise} \end{cases}$

No, the answer is incorrect. Score: 0

Accepted Answers:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}$$

10Which of the following is a reference book for this course

. .

1 point

1 point

R. Bose, Information theory, coding and cryptography, McGraw-Hill, 3rd Edition, 2016.

T.M. Cover and J. A. Thomas, Elements of information theory, John Wiley & Sons, 2012.

T. K. Moon, Error Correction Coding: Mathematical Methods and Algorithms, Wiley, 2005

All of the above

No, the answer is incorrect. Score: 0

Accepted Answers: All of the above

Previous Page

End

Information Theory, Coding and Cryptography - ...