ourses » Principles of Digital Communications					
Jnit 8 - We	Announcements Course Ask a Question Progress Mentor FAQ				
Course outline	Assignment 7				
How to access the portal	As per our records you have not submitted this Due on 2018-09-19, 23:59 IST assignment.				
Week 1	1) Three equiprobable symbols generated by a memoryless source at the 1 <i>poi</i>				
Week 2	rate $R = 500$ symbols per second are respectively transmitted using a 3-level baseband PAM system over an AWGN channel with zero-mean noise and noise power spectral				
Week 3	density $\frac{N}{2}$. The amplitude levels of the transmitted pulse $p(t) = \text{sinc}(tR)$ are $0, \pm 2$. For an optimum receiver it can be shown that the probability of symbol				
Week 4	error $P_e = \alpha Q \left(\sqrt{\beta \frac{E_{av}}{N}} \right)$ where α and β are constant and E_{av} denotes the average				
Week 5	pulse energy. The value of α and β				
Week 6					
Week 7	lpha=1,eta=0.5				
CLecture 34 : M-ary PCM/PAM – I	lpha = 1.33, eta = 0.66				
Lecture 35 : M-ary PCM/PAM – II	lpha=1.33, eta=0.33 $lpha=1,eta=2$				
Lecture 36 : Line Coding – I	No, the answer is incorrect. Score: 0				
Lecture 37 : Line Coding – II	Accepted Answers: $lpha=1.33, eta=0.33$				
 Lecture 38 : Line Coding – III 	2) Let $\{\alpha_k\}_{k=-\infty}^{\infty}$ be a sequence of independent and identically distributed (iid) 1 <i>poi</i> random variables, each taking values +1 and -1 with equal probability. This sequence is transmitted at baseband by a Manchester line coding scheme described				
Download Videos	$\int 1 if 0 \le t < \frac{T}{2}$				
	by $r(t) = \sum_{k=1}^{\infty} \alpha_k n(t-kT)$ where $n(t) = \int_{-\infty}^{\infty} 1^{-1} dt = T$				

A project of

In association with

Funded by

Week 9	ce De
Week 10	
Week 11	
Week 12	

 $S_x(f) = T \operatorname{sinc}^2\left(\frac{T}{4}f\right) \sin^2\left(2\pi f \frac{T}{2}\right)$ $S_x(f) = T \operatorname{sinc}\left(\frac{T}{4}f\right) \sin\left(2\pi f \frac{T}{2}\right)$ No, the answer is incorrect. Score: 0 Accepted Answers: $S_x(f) = T \operatorname{sinc}^2\left(\frac{T}{2}f\right) \sin^2\left(2\pi f \frac{T}{4}\right)$

3) The output of a binary memoryless source is transmitted over an AWGN channel using a binary baseband PAM system which deploys rectangular pulses of duration T and amplitude $\pm A$. Assuming transmission of equiprobable binary symbols at a rate $R = \frac{1}{T} = 10^5$ bits per second, noise power spectral density $\frac{N}{2} = 0.5 \times 10^{-2}$ W/Hz, and probability of bit error $P_b = 10^{-6}$, the minimum value of A is

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Range) 104,108

1	point
_	P • · · · ·

4) In Question-1 it is desired that P_e be less than 10^{-4} . Assuming the symbol rate of 5000 symbols per second the average signal power P_{av} in terms of noise power spectral density is $P_{av} = \gamma N$ where γ is

No, the answer is incorrect. Score: 0 Accepted Answers: (Type: Range) 21600,21700

	-	
1	poin	t

⁵⁾ In Question-2, we use precoded sequence $\{\beta_k\}_{k=-\infty}^{\infty}$ for baseband transmission by the same Manchester line coding scheme where $\beta_k = \alpha_k + \mu \alpha_{k-1}$ with μ as a constant. It is desirable to have a null in the power spectrum $f = \frac{1}{T}$. If possible, the value of μ is ...

Otherwise, indicate your answer as 0.

No, the answer is incorrect. Score: 0	
Accepted Answers: (Type: Numeric) -1	
	1 point
Previous Page	End