

| Week 6  | $2A^2N_o$                                                                                                                                  |         |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Week 7  | $4A^2N_o$                                                                                                                                  |         |
| Week 8  | No, the answer is incorrect.                                                                                                               |         |
| Week 9  | Accepted Answers:                                                                                                                          |         |
| Week 10 | $A^2 N_o$                                                                                                                                  |         |
| Week 11 | 3) For the optimum receiver, the probability of symbol error for the communication system in question 2, as a function of $A$ and $N_o$ is | 1 point |
| Week 12 |                                                                                                                                            |         |
|         | $Q(\sqrt{A^2/N_o})$                                                                                                                        |         |

 $Q(\sqrt{2A^2/N_o})$   $Q(\sqrt{4A^2/N_o})$   $Q(\sqrt{4A^2/N_o})$  $Q(\sqrt{A^2/2N_o})$ 

No, the answer is incorrect. Score: 0

Accepted Answers:

 $Q(\sqrt{4A^2/N_o})$ 

4) Two equiprobable symbols are transmitted using signals  $s_1(t)$  and  $s_2(t)$  given below, over a **1** point zero-mean AWGN channel with noise power spectral density  $N_o/2$ . The

signal  $s_1(t) = At/T, t \in [0,T]$  and 0 otherwise.  $s_2(t) = A\left(1 - \frac{t}{T}\right), t \in [0,T]$ , and 0 otherwise. The probability of symbol error for the optimum receiver in terms of A, T and  $N_o$  is

$$Q(\sqrt{A^2T/6N_o})$$
  
 $Q(\sqrt{A^2T/3N_o})$   
 $Q(\sqrt{A^2T/2N_o})$   
 $Q(\sqrt{A^2T/2N_o})$   
 $Q(\sqrt{A^2T/4N_o})$ 

No, the answer is incorrect. Score: 0

Accepted Answers:

 $Q(\sqrt{A^2T/6N_o})$ 

5) The input to a signal detector is of the form  $r = \pm A + n$ . The amplitudes +A and -A are **1** point equiprobable. The noise variable n is distributed according to Laplacian pdf,  $f(n) = \frac{\lambda}{2} e^{-\lambda |n|}$ . The expression for signal to noise ratio (SNR) in this case is  $A^2 \lambda^2 / 2$ . The required SNR to achieve an error probability of  $10^{-5}$  for the optimum receiver, approximately (in dB) is

Principles of Digital Communications - - Unit 5 ...

| 17.6                         |  |  |
|------------------------------|--|--|
| 13.6                         |  |  |
| No, the answer is incorrect. |  |  |
| Score: 0                     |  |  |
| Accepted Answers:            |  |  |
| 17.6                         |  |  |
|                              |  |  |

Previous Page

End