

 s_1

Week 7		Score: 0	
HOOKT	ce De	Accepted Answers:	
Week 8		(Type: Numeric) 2	
Week 9			1 point
		4) In Question 3, which of the message signals is most vulnerable to errors?	1 point
Week 10		•	
Week 11		s_1	
Week 12		•	
		s_2	
		•	
		s_3	
		•	
		s_2 and s_3	
		No, the answer is incorrect.	
		Score: 0	
		Accepted Answers:	

5) **X** is an n-dimensional Gaussian vector. Its elements X_i are pairwise independent with **0** points mean and variance denoted by μ_i and σ_i^2 respectively. The differential entropy of **X** is

 $h(X) = \frac{1}{2} \log_2[2\pi(\sigma_1^2 \sigma_2^2 \dots \sigma_n^2)^{1/n}]$ $h(X) = \frac{n}{2} \log_2[\pi(\sigma_1^2 \sigma_2^2 \dots \sigma_n^2)^{1/n}]$ $h(X) = \frac{1}{2} \log_2[\pi(\sigma_1^2 \sigma_2^2 \dots \sigma_n^2)^{1/n}]$ $h(X) = \frac{n}{2} \log_2[2\pi(\sigma_1^2 \sigma_2^2 \dots \sigma_n^2)^{1/n}]$ No, the answer is incorrect. Score: 0

Accepted Answers: $h(X) = rac{n}{2} \log_2 [2\pi (\sigma_1^2 \sigma_2^2 \dots \sigma_n^2)^{1/n}]$

Previous Page

End