## Courses » Principles of Digital Communications

Announcements Course Ask a Question Progress Mentor FAQ

## Unit 13 - Week

12

## Course outline

How to access
the portal

## Week 1

Week 2

Week 3
Week 4

Week 5

Week 6

Week 7

Week 8

Week 9

Week 10

Week 11

Week 12
Lecture 60 :
Differential
Phase Shift
Keying
Lecture 61 :
Channel
Coding - I
1 artura 6)

## Assignment 12

The due date for submitting this assignment has passed.
As per our records you have not submitted this Due on 2018-10-24, 23:59 IST. assignment.

1) Equiprobable binary data sequence is transmitted over an AWGN channel using a binary differential phase shift keying (DPSK) signaling scheme. The average transmitted power is 150 milliwatts with channel attenuation of 80 dB . The channel noise is zero mean with noise power spectral density $\frac{N}{2}=0.5 \times 10^{-15} W / H z$. If it is desirable to have the probability of bit error $P_{b}=10^{-4}$ then the maximum possible bit rate for transmission in kbps (kilo-bits per second) is $\qquad$


No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Range) 175,177
1 point
2) It is given that $(5,1)$ repetition code consists of the two codewords $00000 \quad 0.5$ points and 11111, corresponding to message 0 and 1 , respectively. Is this a perfect code?


No, the answer is incorrect.
Score: 0
Accepted Answers:
Yes
3) Consider the $(4,3)$ single parity check code. The Generator matrix $[G]$ for this 1 point code, where $I_{n}$ denotes an identity matrix of size $n$, is
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -

NTTET National Programme on Technology Enhanced Learning

Funded by

Coding:
Hamming
Codes
Lecture 65 :
Channel
Coding:
Decoding using
Standard
Arrays
Download
Videos

## Weekly

Feedback
Quiz :
Assignment 12
Assignment 12

- Solutions

$$
[G]=\left[\begin{array}{ll}
P^{T} & I_{1}
\end{array}\right] \text { where } P=[1]
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
[G]=\left[\begin{array}{ll}
P^{T} & I_{3}
\end{array}\right] \text { where } P=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]
$$

4) In Question [3], the minimum distance $d_{\text {min }}$ for this code is $\qquad$
$\square$
No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) 2
5) In Question [3], does this code possess error correction property?
0.5 points
0.5 pointsYesNo

No, the answer is incorrect.
Score: 0
Accepted Answers:
No
$6)$ Is a $(7,3)$ code a perfect code?
0.5 points


No, the answer is incorrect.
Score: 0
Accepted Answers:
No
7) A $(15,11)$ linear block code can be defined by the following parity array

1 point
$[p]=\left[\begin{array}{llll}0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right]$

A vector $\mathrm{V}=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 1 & 10\end{array} 01011011\right.$ ] is received. The syndrome $[S]$ for this received vector is

$$
\begin{aligned}
& {[S]=\left[\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right]} \\
& {[S]=\left[\begin{array}{llll}
1 & 0 & 1 & 0
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& {[S]=\left[\begin{array}{llll}
0 & 1 & 1 & 0
\end{array}\right]} \\
& {[S]=\left[\begin{array}{llll}
0 & 0 & 1 & 1
\end{array}\right]}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$[S]=\left[\begin{array}{llll}0 & 1 & 1 & 0\end{array}\right]$

Previous Page

